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Abstract 

In the presence of a Wi-Fi network, movements of individuals lead to changes in the channel state information 

(CSI) of the Wi-Fi network. Thus, it is possible to use CSI to identify specific individuals based on walking gait and 

under movements. We have built a hardware system to collect CSI and developed CSI real-time acquisition and 

visualization software. We further improve results by preprocessing the CSI to remove noise by outlier removal, a 

low-pass filter, and a discrete wavelet transform. For identity recognition, we propose a parallel learning 

structure using a convolutional neural network (CNN) and bidirectional long-term and short-term memory 

network to extract amplitude and time sequence features of human gait at the same time. We then classify the two 

gait features using Softmax function to identify individuals. Our identity recognition experiment with 30 people 

yielded a maximum accuracy of 98.7% with our device and software. The system has a value of application in the 

field of smart home and intrusion detection. 

Keywords: CSI, specific individuals, parallel learning structure, CNN, human gait 

I. Introduction 

Personnel identity recognition is one of the most important technologies in security monitoring systems. 

Recognition can be accomplished using computer vision [1], but doing so requires sufficient light. It can also be 

done using biometrics [2], but this approach is easy to forge. It can be done using wearable sensors [3], but this 

method requires the person to be identified to wear devices, which causes some inconvenience. Micro-Doppler 

feature identification is also feasible, but the cost of the equipment is high [4]. In the early days of Wi-Fi, the 

received signal strength indication (RSSI) of the wireless signals was used for indoor positioning [5] and activity 

recognition [6], but research [7] confirmed that such methods are susceptible to multipath effects, resulting in the 

poor reliability, low accuracy, and other shortcomings. 

In 2011, researchers at the University of Washington developed the CSI-tools package [8], which makes it very 

easy to obtain channel state information (CSI) using a wireless network card. Recent studies have shown that CSI 

correlates with movements of a person active within the coverage of the wireless [9, 10]. This correlation enables 

detection of specific types of activities, including recognizing gestures [11], actions [12], identity [13], sleep 

patterns [14], and dangerous driving [15]. These studies use the channel state information extracted from Wi-Fi 

signals to perform these tasks without sensors or contact. When used for personal identification, this method offers 

user privacy, easy deployment, and low cost. 

There are many ways to employ CSI for personal identity recognition. The first to use CSI to identify people is the 

WiWho model [16], which uses a peak and valley detection algorithm to extract the waveform of each walking 

step, and uses a decision tree classifier. The FreeSense model [17] uses the k-nearest neighbor (KNN) algorithm to 

classify and recognize the discrete wavelet features of CSI. The WiID model [18] first uses a Hidden Markov 
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Model (HMM) to classify DWT features followed by a support vector machine (SVM) for final classification. The 

Wii model [19] extracts the time-domain and frequency-domain features of a person’s gait and also uses a support 

vector machine classifier. Wi-Fi-ID model [20] uses the continuous wavelet transform (CWT) algorithm to extract 

signals of different frequency bands in CSI and uses a classifier based on a sparse approximation classification 

algorithm (Soft Actor-critic, SAC). The identity recognition model using the Empirical Mode Decomposition 

(EMD) framework [21] combines time-domain features and frequency-domain features to construct hybrid features 

and uses the Softmax function as a classifier. The NeuralWave model [22] integrates the amplitude and phase of 

CSI and uses convolutional neural networks (CNNs) to classify eigenvalues. The CSI-Net model [23] uses 

transposed convolution networks (TCNs) to perform feature mapping on the CSI and deep neural networks 

(DNNs) to extract and classify features. The characteristics of various CSI-based identification methods are shown 

in Table 1. 

 

Table 1 Various personal identification methods using CSI 

References Method Identifiable number of people Accuracy 

[16] Decision Tree 2–6  92%–80% 

[17] KNN 2–6 94.5%–88.9% 

[18] HMM, SVM 10 90% 

[19] SVM 2–5 98.7%–91.5% 

[20] SAC 2–6 93%–77% 

[21] Softmax 10 97.5% 

[22] CNN 24 87.7% 

[23] DNN 30 93% 

 

Existing CSI-based identification methods also have some shortcomings. For example, methods based on simple 

classifiers (SVM, KNN, etc.) require artificial feature selection of samples that do not precisely represent the 

biological features implicit in the radio frequency signal, limiting the number of people identifiable by these 

methods to 10 or fewer. Although deep learning enables automatic extraction of the CSI features, those approaches 

are limited to the extraction of spatial features and do not consider time features. In response to these 

shortcomings, we combine the amplitude characteristics of CSI with time sequence characteristics and propose an 

identity recognition model and working device that integrate CNN and BiLSTM. Our main contributions are as 

follows: 

According to the rate of change of the influence of human activities on the channel, we propose a combination of 

abnormal point removal, low-pass filter, and discrete wavelet transform to remove noise in CSI; 

 

We propose a parallel feature extraction and classification model constructed with CNN and BiLSTM that extracts 

human gait features from CSI at the same time. The amplitude feature is obtained from the CNN, and the time 

sequence feature is extracted from the BiLSTM; 

 

We create a Wi-Fi CSI acquisition and processing device using an industrial computer and Wi-Fi network card to 

identify persons indoors using our CSI training model. 

 

The rest of this paper is organized as follows. In section 2, we analyze and discuss the identification model 

including the CSI preprocessing method and the feature recognition method using CNN and BiLSTM. In Section 
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3, we present our hardware and software platform. The experimental results and their analysis and discussion are 

summarized in Section 4. Finally, we present our conclusions in Section 5. 

 

II. System Model 

 

The estimation of CSI is a prerequisite for demodulating orthogonal frequency-division multiplexing (OFDM) 

signals. We denote the number of antennas in the transmitter as, the number of antennas in the receiver as , and the 

number of sub-carriers between antenna links as . Every time a signal is received, a 3-dimensional CSI matrix of 

size  is obtained that describes the changing characteristics of the wireless signal in the channel transmission 

process. CSI includes the amplitude and phase characteristics of the wireless signal of each antenna pair at the time 

of transmission. These changes are caused by scattering, fading, power attenuation, shadowing, and other 

phenomena of channel propagation, which can be expressed as 

𝑦 = 𝐻𝑥 + 𝑛 
(1) 

where y is the received signal, x is the sent signal, H is the channel matrix, and  n is the noise in the normal 

distribution of N(0,S). The channel matrix is then estimated as 

𝐻̂ =
𝑦

𝑥⁄    
(2) 

 Ĥ is CSI, which can be expressed as 

𝑯̂(𝑓𝑘)    

= (

ℎ11 … ℎ1𝑁𝑡

⋮ ⋱ ⋮
ℎ𝑁𝑟1 … ℎ𝑁𝑟𝑁𝑡

) 

 

= ‖𝑯̂(𝑓𝑘)‖𝑒
𝑗∠𝑯̂(𝑓𝑘) 

(
      (3) 

where hNrNt
 represents the channel state information between the antenna pair composed of the Nt-th transmitting 

antenna and the  Nr -th receiving antenna, Ĥ(fk)  represents the channel characteristics of the subcarrier with 

frequency fk, ‖Ĥ(fk)‖ represents the amplitude, ej∠Ĥ(fk) represents the phase, and k ∈ (1, 30) represents the index 

of the subcarrier. 

 

When there are people moving indoors, the phase and amplitude of the corresponding CSI will change accordingly. 

Thus, the CSI of the Wi-Fi signal makes it possible to identify the currently active person based on the changing 

CSI characteristics. Figure 1 presents an overview of the identification method using CSI. The working principle of 

each part of the figure will be discussed in detail later. 
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Fig 1: Overview of person identification using CSI 

 

2.1 Data preprocessing 

 

2.1.1 Removal of abnormal points 

The original CSI includes interference noise caused by multipath effects. These outliers are not caused by human 

activities and hinder the extraction of behavior features. Therefore, we use the Hample algorithm to deal with the 

outliers in the original CSI data, a low-pass filter to remove the high-frequency components caused by multipath 

effects, and a wavelet transform to filter out the local features of the subcarrier changes in the OFDM signal. 

The Hampel-based abnormal point removal method uses the median (Median, MED) of the data set and the mean 

absolute deviation (MAD) to discriminate and remove abnormal data [24]. First, for the data set with window 

width defined in equation (4), the median value zi is calculated by Ci: 

𝐶𝑖 = {𝑐𝑗|𝑗 ∈ [𝑖, 𝑖 + 𝑤]}. (4) 

We then construct a data sequence Ki as 

𝐾𝑖 = {𝑘𝑗|𝑘𝑗 = |𝑐𝑗 − 𝑧𝑖|, 𝑐𝑗 ∈ 𝐶𝑖}. (5) 

If Q = 1.4826Ki and q = |cm − ki|, when q ≥ Q*w, the current data value is replaced with zi. 
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(a)                                                          (b) 

Fig 2: Example of local outlier removal from the original CSI 

 

If the amplitude of a sub-carrier in CSI is not in the effective range [μ − λσ, μ + λσ], it will be regarded as an 

outlier and eliminated. For the original CSI to be processed, we first calculate the median value of the data in the 

window and calculate the absolute deviation between each data point and the median value. We then set the 

threshold according to the calculation results and determine whether the point is an abnormal point. If the data is 

not in the effective range, it is an abnormal point replaced with the median value. μ in the effective interval is the 

median value of the original CSI, while λ represents the outlier discrimination parameter (generally equal to 3), 

which is the absolute median deviation of the subcarrier amplitude. The results of removing local outliers in the 

original CSI are shown in Figure 2 (b); four outliers have been removed. 

 

2.1.2 Preliminary filtering 

In addition to expressing the low-frequency components of human behavior, CSI also contains high-frequency 

components caused by multipath propagation. Therefore, a low-pass filter is required to perform preliminary 

filtering. Compared with other filters, the Butterworth filter has the flattest frequency response in the passband 

with a stopband that eventually tends to zero. Therefore, the Butterworth filter not only ensures the accuracy of the 

original frequency range signal but also filters out the out-of-band noise. The square expression of its impulse 

response function is 

|𝐻(𝜔)|2 =
1

1 + (𝜔 𝜔𝑐⁄ )
2𝑛 (6) 

where H(ω) represents the amplitude of the signal, ωc represents the cut-off frequency, and n represents the order 

of the filter. Considering the computational complexity and filtering effect, the order of the filter is 3. As shown in 

Figure 3(b), the amplitude curves of 3 subcarriers (s1, s2, s3) of CSI have obvious amplitude changes before being 

filtered. After filtering, their amplitude curves slowed significantly. After filtering the subcarriers of the CSI, the 

amplitude curves change with time slow noticeably. 
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(a)                                                         (b) 

Fig 3: CSI amplitude curves before and after low pass filtering 

 

2.1.3 Secondary filtering 

Neural networks learning human behavior features directly from noisy data produce certain deviations that affect 

recognition accuracy. Wavelet transforms support multiple resolutions good denoising effects with low signal-to-

noise ratios (SNRs). In order to more clearly show the local characteristics of human behavior corresponding to the 

subcarrier changes, we use discrete wavelets for the secondary processing of CSI signals. 

Assuming that the CSI sequence is S(t), the wavelet decomposition is defined as 

𝑆(𝑡) = 𝐴𝑛 + 𝐷𝑛 + 𝐷𝑛−1 + ⋯+ 𝐷1               (7) 

where A is the low-frequency approximation component, n is the number of layers of wavelet decomposition, and 

D  is the high-frequency detail component. The discrete wavelet transform method implemented by an inner 

product or convolution is complex and time-consuming to calculate, but Mallat’s algorithm effectively solves this 

problem [25]. 

After wavelet transformation, the original CSI can be reconstructed through the set threshold to obtain the CSI with 

high frequency noise removed. The processing process is shown in Figure 4. The process first decomposes the 

signal using the selected wavelet function and then determines the threshold, with the decomposed detail 

coefficients solved by the soft thresholding function. Finally, the processed coefficients are reconstructed by the 

wavelet transform to obtain the denoised signal. The processing results depend on the wavelet basis and order, the 

number of decomposition levels, and the chosen detail coefficient. 

In order to not only remove high-frequency noise but also ensure that there is enough detailed information to 

discriminate between gestures, we decompose and reconstruct the CSI using a 4-layer Symlets wavelet. Within the 

scope value and function mask of the discrete wavelet transform, Fδ and M denote the threshold operator and mask 

operator of wavelet analysis, respectively; cm,n denotes the decomposition coefficient;  δ is the threshold; and the 

function rule of the threshold operator is as in equation (8). As in equation (9), M preserves the coefficients that 

meet certain conditions unchanged and sets the ones that are not satisfied to 0. 

(𝐹𝛿𝑐)𝑚,𝑛 = {
𝑐𝑚,𝑛 , |𝑐𝑚,𝑛| > 𝛿

0 ,     𝑒𝑙𝑠𝑒
    

(8) 

(𝑀𝑐)𝑚,𝑛 = {
𝑐𝑚,𝑛 , |𝑐𝑚,𝑛| ∈ 𝑄

0 ,      𝑒𝑙𝑠𝑒
 (9) 
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In order to reduce the error and obtain more accurate frequency domain information, we employ the Symlets 

wavelet function with approximate symmetry and determine the decomposition level N according to the situation. 

Larger values of N enable stronger local processing ability in the frequency domain at the expense of  

orthogonality. 

 

Threshold

Mask

DWT

Restructured 

CSIOriginal CSI 

sequence

 

Fig 4: Discrete wavelet transform denoising process 
 

For the wavelet denoising of the CSI, the penalty strategy model is used to calculate the 

threshold [26]: 

𝑓(𝑡) = −∑𝑐𝑘
2 + 2𝜎2𝑡(𝛼 + 𝑙𝑜𝑔(

𝑛

𝑡
))

𝑘≤𝑡

   (10) 

Where ck
2 represents the k-th largest value among the wavelet decomposition coefficients, n is the total number of 

wavelet decomposition coefficients, and α is a real number greater than 1 that is generally α = 2. The sparseness 

of the wavelet coefficients after noise reduction is determined by α, with larger values increasing the sparsity and 

smoothing the reconstructed signal waveform. According to this method, the final threshold is determined to be 

threshold =|t1|, where t1 is the variable that yields the smallest value. 

 

2.2 Personnel identification model 

 

As shown in Figure 5, the personnel identification model composed of deep CNN [27] and BiLSTM networks [28] 

extracts human gait features from the CSI to perform identity recognition. The deep CNN extracts the gait 

amplitude features, and the BiLSTM network extracts the gait time features. Finally, the softmax function is used 

to classify these two features to identify the person. 
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Fig 5: Personnel identification model 
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2.2.1 Gait amplitude feature extractor 

According to our experiments, increasing the number of network layers beyond 3 only slightly improved the 

recognition accuracy. However, more layers require more hyperparameters to be trained, thereby increasing the 

time cost and space occupation of the model. Therefore, we use 3 CNN layers. In order to reduce the 

hyperparameters that the model needs to train, we found it necessary to add a maximum pooling layer 

(Maxpooling) and a loss layer (Dropout) after each layer of the CNN. Therefore, the structure of the CNN, as 

shown in Figure 6, consists of 3 convolutional neural network layers (C1, C2, C3), 3 batch normalized network 

layers (B1, B2, B3), 3 maximum pooling network layers (M1, M2, M3), 3 Dropout layers (D1, D2, D3), and 1 

global average pooling layer G1. 
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Fig 6: The deep CNN structure used for gait amplitude feature extraction 

 

In the deep CNN, the current convolution layer first uses the convolution kernel and the feature map output by the 

previous layer to perform the convolution operation, then applies the activation function to the result of the 

convolution operation, and finally outputs the activated feature map. The output feature map can be expressed as a 

combination of the convolution kernel and the input feature map: 

𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑖

𝑙−1 ∗ 𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑙

𝑖∈𝑀𝑗

)  (11) 

where Mj represents the selection of the input mapping, xi
l−1 represents the previous feature map, bj

l represents the 

deviation, and kij
l  represents the convolution kernel. The feature map obtained after the convolution operation 

represents the gait amplitude characteristics of the person in the CSI. However, when the extractor extracts feature 

maps from the CSI, each set of convolution kernels generates new feature maps of the same size as the previous 

layer’s feature maps. This may increase the number of channels of the feature maps, which introduces more 

hyperparameters training in turn. 

 

To alleviate this problem, we add a maximum pooling layer (Maxpool) and a loss layer (Dropout) after each 

convolutional layer. The maximum pooling layer extracts the largest element in each pooling window to represent 

the characteristics of this window, and the loss layer randomly discards the connections between some neurons, 

thus improving the convergence speed of the model and increasing the model’s anti-overfitting ability. After 

completing the convolution, the output of the model is passed to the batch normalization layer (Batch 

Normalization, BN). The BN layer between the convolutional layer and the activation function normalizes the data 

by calculating the mean and variance of the training data and likewise normalizes the distribution of neurons in the 

hidden layer, which helps the activation function learn the data distribution. In this way, we avoid the problem of 

gradient disappearance in the training process of the model and accelerate the training speed. 

 



CONVERTER MAGAZINE 

Volume 2021, No. 2 

ISSN: 0010-8189 

© CONVERTER 2020 

www.converter-magazine.info 

78 

 

 

A single CNN layer can only extract linear features in CSI samples, so we enable the model to extract non-linear 

features by overlapping multiple CNN and BN layers and add ReLu activation function after each BN layer. The 

ReLu activation function introduces nonlinear feature extraction capabilities to the model. Considering the large 

number of training samples in the experiment, the model compresses the output feature map of the CNN into one-

dimensional data through the global average pooling layer. 

 

Table 2 Parameter settings of the deep CNN 

Layer order Number of neurons Size of kernel Pooling layer Accuracy 

1 64 4*1 4  92%–80% 

2 128 4*1 4 94.5%–88.9% 

3 128 4*1 4 90% 

 

The parameters of the structure shown in Figure 6 are given in Table 2. The parameter number of the pooling 

layers is set to 4, and the parameter of the loss layer is set to 0.6. The CSI data input to the network is one-

dimensional data with the dimensions of (3000, 1); the C1 layer extracts a feature map with the dimensions of 

(3000, 64) from it.  

 

The characteristic map is normalized by the B1 layer as a normal distribution, but the pattern remains unchanged. 

The feature map of the normal distribution is continuously compressed by the M1 layer and has the dimensions of 

(750,64) when complete. After the D1 layer randomly discards the connections of 60% of the neurons in the 

hidden layer, the C2 layer extracts features from the feature map processed by the D1 layer to produce an output 

feature map with dimensions (750,128).  

 

After the feature map is standardized to a normal distribution by the B2 layer, it is compressed by the M2 layer to 

obtain a feature map with a dimension of (187,128). The D2 layer randomly discards the connections of 60% of the 

neurons in the hidden layer. Then, the process extracts the features of the feature map processed by the D2 layer 

via the C3 layer, to produce a feature map of dimensions (187,128). The feature map continues to be normalized by 

the B3 layer as a normal distribution, and is then compressed by the M3 layer to produce a map with dimensions 

(46,128). After 60% of the neurons in the hidden layer are randomly discarded by the D3 layer, the G1 layer 

performs the global pooling operation on the feature map output by the D3 layer to obtain 128 gait amplitude 

features, expressed as 

𝑭 = [𝐹1, … , 𝐹𝑖, … , 𝐹128] (12) 

where F represents the output vector of the deep CNN, and Fi represents the i-th gait amplitude feature. 

 

2.2.2 Gait time feature extractor 

3000×1

Input

.

.

.

3000×128 3000×128 128

B1 B2 G2

 
Fig 7: The structure of the deep CNN used for gait amplitude feature extraction 

 

Taking the time sequence of the appearance of different gait amplitudes as biometrics represents the behavioral 

differences of different people in more detail. Therefore, a deep learning network with time memory is used to 
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extract the gait time features in the CSI. Because future information is also very important when learning gait 

characteristics, we use a BiLSTM network to extract gait time characteristics. Our experiments show that 

increasing number of layers in the BiLSTM network beyond 2 improves the recognition accuracy by less than 1%, 

even though it significantly increases the training time required. Therefore, the BiLSTM network consists of two 

bidirectional long- and short-term memory network layers (B1, B2) and an average global pooling layer G2 as 

shown in Figure 7. 

 

Since the BiLSTM network in Figure 7 includes a forward layer and a backward layer, the network can process the 

CSI time series from two directions for automatic feature extraction and sequential information coding. According 

to the contribution of the extracted features to the recognition results, the features are forgotten or retained. 

Because the two-way operation considers the influence of past and future information on the current hidden state at 

the same time, a richer time feature is obtained. Because a single-layer BiLSTM network extracts insufficient 

features, we use a 2-layer BiLSTM network to extract temporal gait features from CSI data. Finally, the extracted 

feature maps are compressed through the average global pooling layer to reduce the hyperparameters that the 

model needs. 

 

Both the B1 and B2 layers in Figure 7 contain 64 neurons; the network parameters are shown in Table 3. The 

dimension of the input data of the CSI sample is (3000, 1). B1 is first used to extract the time feature of the input 

sample and obtains a feature map with a dimension of (3000,128). Then the B2 layer extracts the features output 

by the B1 layer, with the resulting feature map dimension of (3000, 128). Finally, the G2 layer pools the output of 

the B2 layer, so that the output feature map is compressed to obtain 128 temporal features of the gait, expressed as 

𝐵 = [𝐵1, … , 𝐵𝑖 , … , 𝐵128]                  (13) 

where B represents the output vector of the gait time feature extractor, and Bi represents the i-th gait time feature 

information. 

 

2.2.3 fusion and recognition to feature 

As shown in Figure 8, the gait amplitude feature F and the time feature B are jointly expressed by the 

concatenation layer as a fusion gait feature as in equation (14). 

𝐸 = [𝐹1, … , 𝐹𝑖, … , 𝐹128, 𝐵1, … , 𝐵𝑖 , … , 𝐵128] .  (14) 

 

The fusion and classification recognition process of these two features is shown in Figure 8. The Concatenate layer 

combines the gait amplitude feature and the gait time feature to obtain 256 gait features, and finally classifies the 

gait features through the Softmax function to identify the person. 

�Deep CNN

128 features

�
128 features

BiLSTM network 

� 256 features
Concatenatio

n 

� 30 peopleSoftMax

�

 
Fig 8: The fusion of gait amplitude and time features  
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The identity recognition model classifies gait features through the Softmax function. The output layer generates a 

score vector Z⃗  by learning the feature mapping of the Concatenate layer, and each element in Z⃗  represents the score 

of a specific class. The Softmax function uses exponentiation and normalization to convert the score vector Z⃗  into a 

probability vector yi: 

𝑦𝑖 = [𝑦𝑖1, 𝑦𝑖2 , … , 𝑦𝑖𝑑]  
(15) 

where yid represents the probability that the i-th CSI sample is predicted to be a class d: 

𝑦𝑖𝑑 = 𝑃(𝑑|𝑖)  =
𝑒𝑥𝑝𝑍(𝑑)

∑ 𝑒𝑥𝑝𝑍(𝑗)𝐷
𝑗=1

 .  
(16) 

Then the vector value with the largest probability value dmax is the predicted class of the i-th CSI sample: 

𝑑𝑚𝑎𝑥 = 𝑃(𝑑|𝑖)𝑑∈𝐷
𝑎𝑟𝑔 𝑚𝑎𝑥

 .  
(17) 

After training the identity recognition model with CSI, the classification accuracy is maximized by minimizing the 

cross-entropy loss function: 

𝐿(𝑡, 𝑦) = −∑ ∑ 𝑡𝑖𝑑𝑙𝑜𝑔 (𝑦𝑖𝑑)
𝑑≤𝐷

 
𝑁

𝑖=1
 .  

(18) 

If and only if the i-th CSI sample belongs to the class d, the value of tid is 1. N indicates the number of samples 

that need to be trained in each batch of the model. 

 

III. Completion of Personnel Identification System 

 

The hardware for the identity recognition system is relatively simple, as shown in Figure 9. It consists of an Intel 

5300 wireless network card connected via the PCMCIA slot of an embedded 32-bit industrial control computer. 

The network card includes three transceiver antennas that can receive signals through MIMO. The computer has 4 

GB of RAM and 128 GB of solid-state mass storage and runs the Linux operating system. 

 

 
Fig 9: The network identification hardware 

 

The functions implemented in software include both real-time collection of the CSI and our identification software. 

Although CSI tools can be used to collect CSI, the original CSI gathering software needs the support of Matlab, 
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which does not run on this computer. For this reason, we have written software to gather CSI data in Python to 

remove the dependency on Matlab. 

 

Since CSI tools save the collected CSI in a file named “csi.dat”, we have analyzed the data format of the file. The 

file consists of multiple binary units called Bfee, each of which contains a field called “Field”. Each Field has two 

parts: a header and a payload. The structure is shown in Figure 10. The header contains the values of the number of 

transmitting antennas, the number of receiving antennas, RSSI, and noise, and the payload contains CSI data, 

including a complex matrix composed of data from 30 sub-carriers. 

 

 
Fig 10: The content of each Bfee Field 

 

We defined a Bfee class method in Python language to extract the contents from csi.dat. The Bfee data container is 

a dictionary type that stores the contents of each Bfee unit in csi.dat in order. The Code index in the Bfee unit is 

converted and judged in decimal. If the Code value corresponding to the index bit is 187, it means that the Field 

corresponding to the index bit contains data such as RSSI and CSI. In that case, the Nrx, Ntx, RSSI, Payload, and 

other data are extracted and stored, including the CSI complex matrix stored from the payload’s fourth bit onward. 

The program flow chart for reading the CSI is shown in Figure 11. 

Timestamp_low (32bit)

Bfee_count (16bit) Unkonwn (16bit)

Nrx (8bit) Ntx  (8bit) Rssi_a  (8bit) Rssi_b  (8bit)

Rssi_c (8bit) Noise (8bit) Agc (8bit)
Antenna_set

(8bit)

Len (16bit) Fake_rate_n_flags (16bit)

Payload (LEN × 8 bit)



CONVERTER MAGAZINE 

Volume 2021, No. 2 

ISSN: 0010-8189 

© CONVERTER 2020 

www.converter-magazine.info 

82 

 

 

Start

Obtain Bfee unit 

from csi.dat

Beff.Code

=187？

Y
ES

Get RSSI, NRX, 

NTX, field, etc

Get CSI complex 

matrix in field

Extracting the 

amplitude of CSI

Extracting Phase  of 

CSI

Extrac RSSI 

Add to CSI 

amplitude list

Add to CSI phase 

list
Add to RSSI list

End

CSI.shape

=(2,3,30)?

Y
E

S

ONReturn：

Invalid packet

 

Fig 11: The flow of the Python CSI decoding program 

 

Like the decoding software, we used Python for the identification portion as well, using the tensorflow package to 

implement the signal preprocessing, identification model, and training discussed in Section 2. We trained the 

identity recognition model on a workstation Dell Precision T5820 using its graphics operation card NVIDIA Tesla 

T4. After training, we transferred the needed model parameters to the identification device for indoor human 

identification test. 

 

IV. Experiments and Results 

 

The experimental environment is shown in Figure 12. The distance between the transmitting antenna and the 

receiving antenna was 2 meters. The CSI sampling frequency was 1000 Hz, and the sampling duration was 10 s, so 

the number of samples of a single sub-carrier CSI per acquisition was 10,000. As shown in Figure 12(b), each 

participant in the experiment walked the same path from A to B. 

 

4.1 CSI changes caused by human activities 

 

Figure 13 shows the varying amplitude of a single sub-carrier CSI for six different participants walking during the 

experiment. The changing patterns were also different, caused by differences in arm swings, body size, or gait 

https://detail.tmall.com/item.htm?id=623150832186&ns=1&abbucket=5
https://detail.tmall.com/item.htm?id=623150832186&ns=1&abbucket=5
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particulars. To determine whether this relationship exists, we verified the results using our identity recognition 

model. 

 

 

(a)                                                                      (b) 

Fig 12: The experimental environment showing  

Tx Rx
Tx Rx

A

B

2m

4
m
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Fig 13: Changes in CSI caused by the activities of different people 

 

4.2 Accuracy of recognition 

 

Training accuracy and test accuracy are two basic evaluation indexes to measure the performance of model 

recognition. The training accuracy Acc1 is the percentage of the number of correctly identified training samples TA 

compared to the total number of training set samples TN.The test accuracy Acc2 is the similar percentage for 

correctly identified test set samples Ta relative to the total number of test samples Tn. However, the test set samples 

cannot be used to update the model weights, meaning that the test accuracy values measure the performance of the 

model with unknown data. Training accuracy and test accuracy can be expressed as 

𝐴𝑐𝑐1 =
𝑇𝐴

𝑇𝑁
⁄   (19) 

𝐴𝑐𝑐2 =
𝑇𝛼

𝑇𝑛
⁄    (20) 

We used an existing CNN identification model and our new identification model to carry out experiments, and the 

results are shown in Figure 14. The accuracy of the new identification model and CNN identification model with 

training data was close to 100%. However, the accuracy of the CNN identification model for the test samples was 

94.2%, while the accuracy of our new model was 98.7%. Because the CNN identification model only extracts 

amplitude feature information from CSI samples, gait features with the same amplitude at different positions were 
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considered as the same feature. The new model’s BiLSTM network extracts the time sequence features of different 

amplitude gaits and overcomes this problem. 

 

Fig 14: Comparison of recognition accuracy of the two models 

 

4.3 Analysis of loss function 

 

We used a loss function to evaluate the inconsistency between the predicted and actual values of the model, 

measuring its robustness. The smaller the loss function result, the better the robustness of the model [29]. Figure 15 

shows the loss function curve of the new model and the CNN identification model. For the same training batch, the 

loss function value of the new identification model was lower than that of CNN identification model, indicating 

that the predicted value of the new model was closer to the real value. In terms of convergence rate, the new model 

converged with 40 training batches, while the CNN model needed 50 batches to do the same. 
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Fig 15: Comparison of recognition accuracy of two models 

 

4.4 Robustness to environmental changes 

 

Fig 16: Comparison of recognition accuracy of two models 

 

L
o

ss

epochs

CNN training

CNN Test

New model 
training

New model test

A
cc

u
ra

cy

Distance

Curve of recognition accuracy change



CONVERTER MAGAZINE 

Volume 2021, No. 2 

ISSN: 0010-8189 

© CONVERTER 2020 

www.converter-magazine.info 

87 

 

 

If the distance between transmitter and receiver is changed, the CSI changes also. If the first test maintains the 

same recognition accuracy for different CSI, it shows that the model is robust. In the same indoor space, we 

changed the distance between the receiver and transmitter to be 2 m, 4 m, 6 m, and 8 m in turn while maintaining 

the height of the receiver and transmitter at 1 m above the ground. We had participants maintain their normal 

walking speed during the experiments. The experimental results show that when the distance between the 

transmitter and the receiver was 2 m, 4 m, 6 m, and 8 m, the accuracy of the new model was 99.1%, 98.3%, 96.9%, 

and 94.2%, respectively. The relationship between the recognition accuracy of the model and the distance between 

the transmitter and the receiver is shown in Figure 16. This shows that in a specific indoor space, the new 

identification model still maintained high accuracy. 

 

V. Conclusions 

 

Using the change in CSI caused by indoor human activities, we have implemented a device to identify individuals 

through the changes in the CSI. The device uses a low-cost embedded computer and Wi-Fi network card, making it 

portable and concealable. In order to improve the quality of the received CSI, we have also proposed a denoising 

method combined with outlier removal, a low-pass filter, and a discrete wavelet transform. In order to solve the 

problems of complexity and insufficient feature extraction of existing identification methods using CSI, we have 

constructed a new identification model combining a CNN and BiLSTM networks. Our process extracts gait 

features from the two deep learning models, fuses them into human identity features, and identifies them via 

classification of the Softmax function. Experimental results show that the accuracy of our new model is 4.5% 

higher than the existing model using a CNN alone. A test involving 30 people shows that the accuracy can reach 

98.7%. In the future, we will further improve our method, increase the ability of transfer learning, make it suitable 

for different indoor space environment, and reduce the time for repeated training. 
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