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Abstract 

 
The transport of gravel bedload in river bend is one of the basic problems of river dynamics. However, both the 

complicated bend flow structure and the stochastic bedload transport make explaining the problem theoretically 

difficult. Flow is the power of the bedload transport, so obtaining the precise theoretical flow structure is 

fundamental. Through considering the velocity-dip phenomenon and giving the matched boundary conditions, we 

have obtained the completed three-dimensional bend flow structure in the previous study. Combining the flow 

structure and the influences of the two-way exposure, we did further research on the incipient motion of the gravel 

bedload in bend in this paper. It turns out that, because of the existence of the secondary flow, the particle in bend 

forced by both the longitude and the transverse velocities in the plane. The two-way velocities form an intersection 

angle which influences the incipient velocity and direction of the particle movement. Moreover, the non-uniform 

distribution of the bend flow structure along the cross-section decides the differences of the intersection angle, 

incipient velocity, transport speed of the bedload in the bed surface. Then, the above differences result in the 

change of the sediment gradation and partition behaviour of the bedload transport. 

 
Keywords: Bend flow, three-dimensional structure, gravel bedload, two-way exposure, incipient velocity, direction 

of transport 

 

 
I. Introduction 

 

It is very effective and necessary to carry out artificial channelization projects in some key river sections, so as to 

make full use of the natural conditions of water conservancy and improve the navigation conditions of the 

waterway. However, for the river dynamic system, changes in boundary conditions (such as water level, flow, and 

incoming sediment replenishment after the completion and operation of the channelization project) will directly 

affect the hydrodynamic flow field of the corresponding river section, and then affect the shape of the river bed. 

Conversely, the change of the river bed shape will directly affect the practicability and safety of the corresponding 

channelization project. Therefore, it becomes very necessary to carry out the prediction and calculation of the 

evolution law of the riverbed. As the curved river section is the most basic unit that constitutes a natural river, the 

erosion and siltation of the riverbed in the bend is the most common. The evolution of the riverbed starts when the 

sediment moves due to the corresponding water flow action and is transported along the corresponding water flow 

direction. The water flow in a bend has a special three-dimensional flow structure which is different from that of a 

straight river. As a dynamic field driving the movement of sediment, it directly affects the moving conditions of 

the sediment in the bend and the subsequent transport movement. The water flow in a bend has a special three-

dimensional flow structure which is different from that of a straight river. As a dynamic field driving the 

movement of sediment, it directly affects the incipient motion conditions of the sediment in the bend and the 

subsequent transport movement. At the same time, the three main navigable river basins in China are the Songhua 

River, the Yangtze River and the Pearl River basins. Among them, the Songhua River Dadingzishan Hub 
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Channel
[1]

, the Yangtze River above Yichang Channel
[2]

, and the Beijiang River Upper Channel
[3]

 are typical sandy 

gravel riverbeds. Therefore, the accurate calculation of the gravel movement law under the action of bend flow has 

strong practical engineering value. 

 

Gravels move on the bed surface, mainly with bedload movement. As one of the basic problems of river dynamics, 

bedload movement has always attracted the attention of a large number of scholars. The bed surface of natural 

rivers is mostly composed of non-uniform sediment. The mutual positional relationship of non-uniform sediment 

on the bed surface is the basis for in-depth study of the characteristics of non-uniform bedload movement. 

Einstein
[4]

, Misri et al.
[5]

, Samaga
[6]

, Mittal
[7]

 and Patel and Ranga
[8]

 introduced different forms of “concealment 

coefficient” to consider the phenomenon of mutual concealment when non-uniform sediment starts to move. Han 

Qiwei
[9-11]

 systematically proposed the concept of relative exposure of sediment particles to reflect the randomness 

of the position of sediment particles on the bed surface, and also introduced it into the study of non-uniform 

sediment movement. Liu Xingnian et al.
[12]

 combined the exposure height with the average height of the bed 

surface, and used the positive or negative of the exposure height to reflect the position of the sediment particles 

relative to the average bed surface, and also pointed out the direct effect of the position of the bed surface on the 

flow force suffered by the particles. Bai Yuchuan et al. introduced relative exposure to the process of starting and 

movement of non-uniform sediment on different bed surfaces and in different states
[13-16]

, proposed the concept of 

two-way exposure
[17] 

for the first time, fully considered the random positional relationship between the sediment 

particles, and analyzed the influence of the positional relationship on the starting conditions of the sediment. 

 

The upstream incoming flow is the source power of the sediment movement, and the dynamic field determines 

whether the bedload has incipient motion or transport and the direction of the transport, as well as the location of 

silt and the final bed structure. Lu Yongjun and Zhang Huaqing
[18]

 pointed out that the bedload transport is affected 

by water flow, and the non-uniform distribution of the water flow conditions determines the non-uniformity of 

sediment transport volume and gradation of the bedload. Moreover, Teraguchi et al.
[19]

, Lu et al.
[20]

, and Liu et 

al.
[21]

 all explained the influence of water flow structure on sediment movement from different perspectives. Due to 

its special bank boundary conditions, curved rivers have a special three-dimensional flow structure that is different 

from straight rivers. That is, there is a secondary circulation structure in the section outside the main flow along the 

flow direction. And such circulation structure directly affects the movement of sediment on the curved river bed. 

Furthermore, based on the observations of the circulation structure of the Colorado River and other rivers, Leopold 

pointed out that the bedload movement is affected by the secondary circulation of the bend, and the main area is on 

the side of the convex beach
[22]

. Li Zhiwei and Fang Chunmin
[23]

 found from their research that the sediment 

movement on the curved bed surface is affected by the lateral circulation, and the bedload is closely related to the 

vertical and horizontal near-bottom velocities and the lateral bottom slope. Parker et al.
[24]

 considered that there are 

two-way sediment transport in the bend, i.e. the longitudinal transport and the lateral transport corresponding to the 

main flow and the lateral flow velocity of the section respectively, and put forward the general formula for the 

lateral sediment transport intensity of the bedload in the bend and the mathematical model for calculating the 

sediment separation of the bed in the bend. It is found from the study that the three-dimensional flow velocity in 

the curved section all presents a non-uniform distribution law along the width of the section, so the incipient 

motion and transportation of bedload is also non-uniform along the width of the section. Clayton et al.
[25] 

observed 

the variability of bedload transport in a 180° bend of the Colorado River in the field, indicating that the coarse and 

fine bedload particles in the bend move in different directions, and the coarse particles will move from the concave 

bank to the center of the channel, resulting in horizontal separation of particles. Besides, Jia Dongdong et al.
[26]

 

also pointed out that when calculating the bedload scouring deformation of a bend, the choice of the direction of 

the bedload transfer has a significant impact on the erosion result, and it cannot be simply assumed to be consistent 

with the average flow velocity along the vertical. Instead, full consideration should be given to the impact of the 

near-bottom water flow on the load transport. 

 

It is found from the statistics of existing research results that the theoretical research on the influence of the non-
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uniform three-dimensional flow structure of the bend flow on the bed surface movement of the gravel is still 

insufficient due to the complicated bend flow structure and the stochastic gravel incipient motion. Based on this 

background, this paper, on the basis of the relatively complete three-dimensional flow structure of the open 

channel in the bend
[27]

, further analyzed the start law of the non-uniform gravel in the bend considering the effect 

of two-way exposure, obtained the theoretical solution of the incipient motion flow velocity of the gravel in the 

bend, and also analyzed the influence of the circulation in the bend on the incipient motion and transport of 

sediment. 

 

II. Theoretical Model of Sediment Incipient Motion Under the Influence of Secondary Flow in Bend 

 

2.1 Bend flow structure considering velocity-dip phenomenon 

 

The upstream incoming flow condition is the dynamic field of sediment movement, and the accurate calculation of 

the three-dimensional flow structure of the bend is the prerequisite for calculating the law of sediment movement 

under the influence of the secondary flow of the bend. 

 

Bai Yuchuan and Wang Xin used orthogonal curvilinear coordinate system to generalize the natural bend flow 

movement
[27]

, as shown in Fig. 1, and split the three-dimensional flow velocity into the main flow control part and 

the secondary flow control part for solution
[27-29]

, as shown in Formula (1). In the process of solving, it is found that 

the three-dimensional flow velocity of the open channel flow in the bend has velocity-dip (the position of the 

maximum flow velocity of the main flow is below the free water surface
[30-32]

, and the position of the secondary 

circulation vortex core is below the half-water depth of the section
[27]

), as shown in Fig. 2. By introducing a 

modified logarithmic wake flow rate, as shown in Formula (2), the velocity sinking phenomenon is fully 

considered, and a complete dimensionless bend open channel three-dimensional flow structure is obtained, as 

shown in Formulas (3)-(5). 

 

 
Fig 1: Orthogonal curvilinear coordinate system 

 

Fig. 1 shows a bend river channel generalized by orthogonal curvilinear coordinate system (s, n, z), s: along the 

flow direction (longitudinal); n: along the transverse direction of the section; z: along the vertical direction of the 

section, with upward perpendicular to the river bed as the positive direction; h is the water depth value; B is the 

half river width value. 
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𝑢𝑠 = 𝑢𝑠̅̅ ̅(𝑠, 𝑛)𝑇(𝜁)                                                                      (1a) 

 

𝑢𝑛 = 𝑢𝑛̅̅ ̅(𝑠, 𝑛)𝑇(𝜁) + 𝑣                                                                 (1b) 

 

𝑢𝑧 = 𝑢𝑧̅̅ ̅(𝑠, 𝑛)𝑇(𝜁) + 𝑤                                                                 (1c) 

 

Where ui  ( i=s, n, z) is the velocity component in the i direction in the bend; �̅�i is the vertical average value of ui, 

which can be regarded as the main flow control velocity component; v is the transverse velocity component of the 

secondary circulation; w is the vertical velocity component of the secondary circulation. Under the premise of 

velocity splitting, 𝑢�̅�𝑇 in formula (1a-1c) represents the velocity component caused by the elementary flow, and 

v(w) represents the velocity component caused by the secondary flow. Therefore, on the basis of velocity splitting, 

a coupling model formed by the depth formula and the three-dimensional governing formula can be used to 

effectively solve the bend flow field. 
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Fig 2: Three-dimensional velocity-dip phenomenon: 

 (a) Longitudinal velocity; (b) Transverse velocity; (c) Vertical velocity 

 

Fig. 2 shows the three-dimensional velocity-dip phenomenon in the bend open channel flow calculated by 

Yuchuan Bai and Xin Wang through the coupling model, where 2(a) is the distribution of the dimensionless 

vertical distribution function T(ζ) of the longitudinal velocity along the relative water depth ζ, 2(b) is the 

distribution of the dimensionless vertical distribution function G0(ζ) of the transverse velocity along the relative 

water depth, 2(c) is the distribution of the dimensionless vertical distribution function G1(ζ) of the vertical velocity 

along the relative water depth. It can be seen intuitively from the figure that as the section becomes narrower and 

deeper (the width-to-depth ratio δ becomes larger), the three-dimensional flow velocity dips respectively. 

Specifically, the position of the maximum velocity of the vertical main flow velocity gradually dips from the free 

water surface, and the position of the secondary circulation vortex core (which can be represented by the position 

of the horizontal velocity zero and the position of the maximum vertical velocity) gradually dips from the half-

water depth of the section. 
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Where 𝑢𝑠0
∗  is the dimensionless flow velocity in the s direction that is not affected by the bend; 𝑢∗𝑏

∗  is the 

dimensionless bed shear flow velocity; κ is the Karman constant; ζ0 is the relative position where the velocity is 

zero determined by the logarithm law; β is the relative position of the velocity dip, β={1+exp-[2/(πδ)]
3/2

}
-1

; α is the 

ratio of the water surface to the bed surface shear stress, α=(1-β)/β. 
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Where ui
*
(i=s,n,z) is the dimensionless three-dimensional flow field in the bend; r

*
 is the dimensionless radius of 

curvature of the bend; νt
*
 is the dimensionless viscosity coefficient; ψ is the bending coefficient, which is the ratio 

of the half-river width to the minimum radius of curvature; χ1 is the calculation coefficient, χ1=α2/√𝐶𝑓   , 

α2=0.077
[33]

, Cf is the dimensionless Chezy coefficient, Cf=gHS0/U
2
  , H is the average water depth of the section, 

S0 is the average slope of the bend, and U is the average velocity of the section. 
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The relevant parameters in the above formula are calculated as follows: 
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     (8) 
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     (9) 

 

Where 
*

1su  is the dimensionless s-direction velocity component affected by the first order of bending; χ and χ20 

are calculation coefficients. The specific calculation methods of the above correlation coefficients and parameters 

can be found in published literature
[27]

. 

 

2.2 Bend flow structure considering velocity-dip phenomenon 

 

2.2.1 Force analysis 

Different from straight rivers, in addition to the longitudinal main flow us, there are horizontal flow velocity un and 

0vertical flow velocity uz in the section of the bend flow. The three-dimensional flow velocity superimposes to 

form a typical spiral flow structure, as shown in Fig. 3. 

 

 
Fig 3: Spiral flow 

 

The transport characteristics of bottom load in bends are mainly related to the vertical and horizontal near-bottom 

velocity
[34-36]

. Therefore, the gravel particles on the bend bed are simultaneously subjected to the combined action 

of the longitudinal instantaneous bottom velocity usb and the transverse instantaneous bottom velocity unb. The two-

way flow velocity acts on the sediment particles on the bed surface to form an included velocity angle, as shown in 

Formula (10). 

 

tan𝜃 = 𝑢𝑛𝑏 𝑢𝑠𝑏⁄                                                                           (10) 

 

The included angle can be defined as the curl value of the secondary circulation, reflecting the strength of the 
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secondary circulation at that location. At the same time, for a natural bend river that forms a curvilinear orthogonal, 

the degree of curvature of the bend affects the included angle of the flow velocity. 

 

The gravel particles are randomly arranged on the bed surface, and the longitudinal and vertical two-way exposures 

are selected to reflect their random positions
[17]

, and the No. 4 particle is the object of force analysis, as shown in 

Fig. 4(a), where ∆𝑧  is the vertical exposure and  ∆𝑥  is the vertical exposure. The exposure degree is 

nondimensionalized with 2 times sediment particle size, and the two-way relative exposure degree is obtained. The 

two-way exposure degree is randomly distributed and has a probability distribution function like Formulas (11)-

(14). No. 4 particle is in a critical incipient motion state in a bend with a rectangular cross-section, and is subjected 

to the combined action of the force of the water current and its own underwater gravity, as shown in Fig. 4(b). 

Under the action of the bend flow, the sediment particles are subjected to the drag force FDs caused by the 

longitudinal velocity, the drag force FDn caused by the lateral velocity, the uplift force FLs caused by the 

longitudinal velocity, the uplift force FLn caused by the lateral velocity, and the underwater gravity W. Considering 

the regular shape (spherical) of the gravel here, the distances from the point of action of FDs, FDn, FLs, and FLn to 

the center of the circle are all taken as D/6
[17]

, and the expressions of the above-mentioned forces are shown in 

Formulas (15)~(19) . 

 

 
(a) Schematic diagram of two-way exposure 

 
(b) Force analysis of gravel under the action of bend flow 
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Fig 4: Random distribution and force diagram of gravel particles on bend bed 

 

Vertical relative exposure: 

 

Uniform sediment 

 

F(∆𝑧
′ ) =

{
 
 

 
 1                    ( ∆𝑧

′＞1)

∆𝑧
′−0.134

0.866
(∆𝑧𝑚

′ ≤ ∆𝑧
′≤ 1)

0             （ ∆𝑧
′＜∆𝑧𝑚

′ ）

     

                                                           

(11) 

 

Non-uniform sediment 

 

F(∆𝑙𝑧
′ ) =

{
 
 
 

 
 
 1                                 (2

ndlevel:   ∆𝑙𝑧
′ ＞

�̅�

𝐷𝑙
;  3rdlevel:   ∆𝑙𝑧

′ ≥ 1)

∆𝑙𝑧
′ −∆𝑧𝑚

′

�̅�

𝐷𝑙
−∆𝑧𝑚

′
   (2ndlevel: ∆𝑧𝑚

′ ≤ ∆𝑙𝑧
′ ≤

�̅�

𝐷𝑙
;  3rdlevel: ∆𝑧𝑚

′ ≤ ∆𝑙𝑧
′ ≤ 1)

             0                                                                  （other cases）

                     （12） 

 

Longitudinal relative exposure: 

 

Uniform sediment 

 

F(∆𝑥
′ ) =

{
  
 

  
 1                    ( ∆𝑥

′＞1)

0.866−√1−(∆x
′ )
2

0.866
(0.5 ≤ ∆𝑥

′≤ 1)

0             （ ∆𝑥
′＜0.5）

                                                  (13)    

                                                         

 

 

Non-uniform sediment 

 

F(∆𝑙𝑥
′ ) =

{
 
 
 
 

 
 
 
 1                    (2ndlevel:   ∆𝑙𝑥

′ ＞
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𝐷𝑙
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𝐷
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2
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�̅�
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2
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𝐷𝑙
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�̅�

𝐷𝑙
≤ ∆𝑙𝑥
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�̅�

𝐷𝑙
√1 − (1 −

�̅�
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)
2
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�̅�

𝐷𝑙
≤ ∆𝑙𝑥

′ ≤
�̅�

𝐷𝑙
)

0                                                                                                     （other cases）

      （14） 

 

Where ∆𝑧
′  is the relative vertical exposure, ∆𝑧

′= ∆z 2𝐷⁄ ; ∆𝑙𝑧
′ is the vertical relative exposure of the non-uniform 

sediment grouping, ∆𝑙𝑧
′ = ∆lz 2𝐷𝑙⁄ ; ∆𝑥

′ is the longitudinal relative exposure, ∆𝑥
′ = ∆x 2𝐷⁄ ; ∆𝑙𝑥

′ is the vertical 

longitudinal relative exposure of the non-uniform sediment grouping, ∆𝑙𝑥
′ = ∆𝑙𝑥 2𝐷𝑙⁄ ; D is the sediment particle 

size; Dl is the non-uniform sediment grouping particle size. For ease of expression, the symbol of the non-uniform 
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sediment particle size group l is omitted in the following derivation process. 

 

 𝐹𝐷𝑠 =
𝐶𝐷𝜌

2

π

4
𝐷2𝑢𝑠𝑐𝑏

2                   (15) 

 

𝐹𝐷𝑛 =
𝐶𝐷𝜌

2

π

4
𝐷2𝑢𝑛𝑐𝑏

2     (16) 

 

𝐹𝐿𝑠 =
𝐶𝐿𝜌

2

π

4
𝐷2𝑢𝑠𝑐𝑏

2     (17) 

 

𝐹𝐿𝑛 =
𝐶𝐿𝜌

2

π

4
𝐷2𝑢𝑛𝑐𝑏

2     (18) 

 

𝑊 = (𝜌𝑠 − 𝜌)𝑔
𝜋

6
𝐷3     (19) 

 

Where uscb is the critical instantaneous bottom velocity of the sediment particles in the s direction; uncb is the 

critical instantaneous bottom velocity of the sediment particles in the n direction; CD is the current drag coefficient; 

CL is the current uplift force coefficient; ρ is the water density; ρs is the density of sediment. 

 

Bai Yuchuan and Wang Xin et al. based on the fine simulation of the water flow structure between large particle 

size gravels (D=20-200mm), found that the random arrangement of gravels resulted in bidirectional exposure and 

formed corresponding vortex areas, making the sediment particles superimposed locally and affected by vortex, 

and the change of local flow structure directly affects the flow force of sediment, which is manifested in the change 

of the corresponding force coefficient. Based on numerical analysis, the uplift force coefficient CL and drag force 

coefficient CD are functions of longitudinal exposure and particle Reynolds number, as shown in Formulas (20)-

(21). 

 

CD = −1.306 + 11.617∆𝑙𝑥
′̅̅ ̅̅ − 17.511∆𝑙𝑥

′̅̅ ̅̅ 2 + 8.417∆𝑙𝑥
′̅̅ ̅̅ 3                                          (20) 

 

CD = −2.378 + 14.994∆𝑙𝑥
′̅̅ ̅̅ − 21.616∆𝑙𝑥

′̅̅ ̅̅ 2 + 9.950∆𝑙𝑥
′̅̅ ̅̅ 3 + 26.924exp(−3.534 × 10−4Re∗)         (21) 

 

Where  ∆𝑙𝑥
′̅̅ ̅̅  is the expected value of longitudinal relative exposure, as calculated by Formulas (13) and (14). 

 

2.2.2 Rolling incipient motion model 

Taking the rolling of No. 4 particle as the critical condition, the contact point of the No. 4 particle and its 

downstream is used as the rolling fulcrum to establish a torque balance formula as Formula (22). 

 

(𝐹𝐷𝑠 + 𝐹𝐷𝑛) (
2

3
𝐷 − ∆𝑙𝑧̅̅ ̅̅ ) + (𝐹𝐿𝑠 + 𝐹𝐿𝑛) [

1

6
𝐷 + √∆𝑙𝑧̅̅ ̅̅ (𝐷 − ∆𝑙𝑧̅̅ ̅̅ )] = 𝑊√∆𝑙𝑧̅̅ ̅̅ (𝐷 − ∆𝑙𝑧̅̅ ̅̅ )                      (22) 

 

Where lz  is the expected value of the vertical exposure. 

 

Entering the relevant variable expression into Formula (22), the vertical critical incipient motion bottom velocity 

can be obtained as: 

 

𝑢𝑠𝑐𝑏 = 𝜑(∆𝑥
′̅̅ ̅, ∆𝑧

′̅̅ ̅)
1

√1+tan2(𝜃)
√
4

3

𝜌𝑠−𝜌

𝜌
𝑔𝐷                                                      (23) 
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Where 𝜑(∆𝑥
′̅̅ ̅, ∆𝑧

′̅̅ ̅) is the incipient motion velocity influence function under the influence of the two-way relative 

exposure, calculated as Formula (24); tanθ is the included angle of the velocity of the bend flow, calculated as 

Formula (10). 

 

𝜑(∆𝑥
′̅̅ ̅, ∆𝑧

′̅̅ ̅) = {
√
1

2
∆𝑧

′̅̅̅̅ (1−
1

2
∆𝑧

′̅̅̅̅ )

CD(
2

3
−
1

2
∆𝑧

′̅̅̅̅ )+CL[
1

6
+√

1

2
∆𝑧

′̅̅̅̅ (1−
1

2
∆𝑧

′̅̅̅̅ )]

}

1/2

                                                      (24) 

 

The instantaneous bottom velocity is a random variable. According to the results of Mr. Dou Guoren’s research, 

under the middle movement standard, the instantaneous bottom velocity has the following relationship with its 

time average
[17]

: 

 

�̂�𝑠𝑐𝑏 =
1

1+0.37×2
𝑢𝑠𝑐𝑏 = 0.575 𝑢𝑠𝑐𝑏                                                          (25) 

 

Where�̂�𝑠𝑐𝑏 is the longitudinal time average bottom velocity of water flow acting on sediment particles. 

 

Therefore, the expression of the incipient motion time average bottom velocity of the sediment particles in the 

longitudinal direction is: 

 

�̂�𝑠𝑐𝑏 = 0.575 𝜑
1

√1+tan2𝜃
√
4

3

𝜌𝑠−𝜌

𝜌
𝑔𝐷                                                         (26) 

 

2.2.3 Model validation 

In this paper, the actual measurement data of Clayton and Pitlick
[25]

 and the incipient motion data of the sediment 

on the slope of the concave bank of the river bend under the middle motion standard from the test by Zhang 

Qizhe
[37]

 are selected to verify the gravel incipient motion formula under the action of the bend flow. The 

verification results are shown in Tab. 1. 

 

Table 1 Model verification 

Data 

sources 

Quantit

y 

(L∙S
-1

) 

Slope 

coefficient

M 

Diamet

er 

(mm) 

Dept

h 

(m) 

Chezy 

coefficie

nt 

C 

Radiu

s 

(m) 

Calculat

ed value 

(m/s) 

Measure

d value 

(m/s) 

Error 

(m/s) 

Relativ

e error 

Clayton 

and 

Pitlick
[2

5]
 

10500 — 1 0.61 29.02 36.1 0.9819 0.4096 
0.572

3 
139.72

% 

10500 — 9 0.61 29.02 36.1 1.0404 1.0090 
0.031

4 
3.11% 

10500 — 12 0.61 29.02 36.1 1.0578 1.1082 

-

0.050

4 

4.55% 

Q.Z. 

Zhang
 

[37]
 

77.79 1.5 8 
0.12

2 
27.22 3 0.0721 0.0667 

0.005

4 
8.10% 

77.79 1.65 8 
0.11

9 
27.10 3 0.0724 0.0663 

0.006

0 
9.05% 

77.79 1.85 8 
0.11

5 
26.93 3 0.0727 0.0795 

-

0.006

9 

8.68% 

77.79 2 8 
0.10

5 
26.65 3 0.0729 0.0851 

-

0.012

1 

14.22% 
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77.79 1.5 8 
0.12

4 
27.28 4 0.0739 0.0539 

0.020

0 
37.11% 

77.79 1.65 8 
0.11

8 
27.06 4 0.0745 0.0601 

0.014

4 
23.96% 

77.79 1.85 8 
0.11

9 
27.07 4 0.0743 0.0733 

0.001

1 
1.50% 

77.79 2 8 0.11 26.74 4 0.0753 0.0805 

-

0.005

3 

6.58% 

77.79 1.5 8 0.12 27.15 5 0.0752 0.0678 
0.007

3 
10.77% 

77.79 1.65 8 
0.11

5 
26.96 5 0.0757 0.0723 

0.003

4 
4.70% 

77.79 1.85 8 
0.11

3 
26.86 5 0.0759 0.0761 

-

0.000

3 

0.39% 

77.79 2 8 
0.10

8 
26.67 5 0.0764 0.0813 

-

0.004

9 

6.03% 

77.79 1.5 8 
0.13

8 
27.71 6 0.0738 0.0601 

0.013

8 
22.96% 

77.79 1.65 8 
0.13

3 
27.54 6 0.0743 0.0696 

0.004

6 
6.61% 

77.79 1.85 8 0.13 27.41 6 0.0745 0.0718 
0.002

7 
3.76% 

77.79 2 8 
0.12

5 
27.24 6 0.0750 0.0745 

0.000

5 
0.67% 

 
This verification selected the largest particle size test group (D=8mm) involved in the Zhang Qizhe test

[37]
. 

Through comparison, it is found that the measured value from Zhang Qizhe’s test is in good agreement with the 

calculated value. The reason for the larger error should be that the theoretical calculation formula deduced in this 

paper is the theoretical result obtained in the rectangular section, with no consideration of the influence of the 

slope, while the measured value given in the reference
[37]

 is the gravel incipient motion bottom velocity on the 

concave bank slope. For the measured data of Clayton and Pitlick
[25]

, the first to third columns of the table 

respectively represent the convex, middle and concave bank data. Through comparison, it is found that the 

calculated value is in good agreement with that of the middle and concave bank, while there is a large error for the 

convex bank (as shown in bold and underlined in Table 1). The reason for this error may be that the median size of 

the sediment on the convex bank of the bend is too small (D=1mm, much smaller than the particle size range of the 

gravel), which exceeds the applicable range of the formula, and the convex bank of the bend often forms a point 

bar with siltation, resulting in the river bed slope to affect the incipient motion velocity. Dou Guoren
[38]

, Liu 

Xingnian
[39]

 and Han Qiwei
[11]

 proposed when verifying the incipient motion flow velocity of large-size sediments 

that when the relative error is about 30%, it can be considered that the formula obtained is consistent with the 

verification results of the measured data. It can be seen from Table 1 that the calculated value is in good agreement 

with the theoretical value, and the error basically meets the requirements, indicating that the theoretical formula 

deduced in this part can truly reflect the flow velocity required for the incipient motion of the gravel under the 

action of the bend flow to a certain extent. 

 

III. Influence of the Secondary Flow in a Bend on the Incipient Motion and Transport Direction of Sediment 

 

3.1 Influence on the incipient motion flow velocity 
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In straight rivers, we do not consider the influence of the secondary flow of the bend and it is considered that the 

gravels are only affected by the main flow. That is, there is only the longitudinal velocity. According to the 

research results of Bai Yuchuan and Wang Xin
[27]

, the time average bottom velocity required for the incipient 

motion of the gravel under the mid-motion standard when the influence of the bend is not considered is shown in 

Formula (27). 

 

�̅�𝑐𝑏 = 0.575 𝜑(∆𝑥
′̅̅ ̅, ∆𝑧

′̅̅ ̅)√
4

3

𝜌𝑠−𝜌

𝜌
𝑔𝐷                                                           (27) 

 

Where �̅�𝑐𝑏 is the time average bottom velocity for the incipient motion of the gravel without considering the 

influence of the bend. 

 

Then the ratio of the longitudinal time average bottom velocity required for the incipient motion of the gravel in a 

bend to the time average bottom velocity required for the incipient motion of the gravel in a straight river is: 

 
𝑢𝑠𝑐𝑏

𝑉𝑐𝑏
=

1

√1+tan2𝜃
≤ 1                                                                       (28) 

 

Formula (28) shows that the existence of the included angle of the flow velocity in the bend (the existence of the 

secondary circulation) makes the sediment particles of the same size grade have the low longitudinal flow velocity 

required for the incipient motion under the same average incoming flow condition. And as the included angle 

increases, i.e. the strength of the secondary circulation increases, the longitudinal flow velocity required for 

sediment’s incipient motion gradually decreases, as shown in Fig. 5. 

 

 
Fig 5: Relationship between θ and �̂�𝑠𝑐𝑏 �̅�𝑐𝑏⁄  

 

It can also be seen from the figure that when the included angle of flow velocity is within the range of 0°-20°, the 

amplitude of the change of the velocity with the angle is small; when θ>20°, the amplitude of the decrease of flow 

velocity increases rapidly, and when θ=60°, the longitudinal time average bottom velocity required for sediment’s 

incipient motion is only 1/2 of that in a straight river. 

 

Δus is defined as the difference between the longitudinal velocity component of the sediment and the longitudinal 

bottom flow velocity required for sediment incipient motion, i.e. ∆𝑢𝑠 = �̂�𝑠𝑐𝑏 − �̅�𝑐𝑏 . This value can reflect the 

difficulty of sediment incipient motion to a certain extent, and the greater the difference is, the easier it is for the 

sediment incipient motion. This value can also be regarded as the sediment transport rate, and the greater the 

difference is, the greater the transport rate will be after the incipient motion of the sediment. When the degree of 
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curvature of the bend is certain, Δus is unevenly distributed along the river width due to the uneven distribution of 

longitudinal flow velocity and lateral velocity in the bend along the width of the section
[27]

, as shown in Fig. 6. 

 

 
Fig 6: Transverse distribution of Δus 

 

In the figure, the horizontal coordinate is positive towards the convex bank, i.e. n>0 is the convex bank. The 

picture shows the distribution of the velocity included angle along the river width under different incoming flow 

conditions (the calculation parameters are the same as the parameters of Zhang Qizhe’s test
[37]

) under the premise 

of ensuring the incipient motion of gravel particles with a particle size of 8mm. It can be seen from the figure that 

under any incoming flow condition, the flow velocity difference along the width of the section is smaller on the 

near shore side, and the flow velocity difference increases rapidly within the range from the quay wall to 0.4B from 

the quay wall, and then the varied range of the velocity difference is weakened when n=-0.6~0.6, and the velocity 

difference on the concave bank side is larger than that on the convex bank side. This distribution trend shows that it 

is not easy to move for the sediment on the side close to the quay wall, and the range of n=-0.6~0.6 should be a 

large area for sediment incipient motion, which is easy to form a sediment transport belt. At the same time, it is 

easier for the sediment to move on the concave bank side than that on the convex bank side. It can also be seen 

from the figure that as the intensity of the incoming flow increases, and the variation range of the velocity 

difference along the river width gradually increases in the large-area incipient motion area (within the range of n=-

0.6~0.6). Such change can indicate that the greater the intensity of the incoming flow is in a river with the same 

degree of curvature, the more obvious the redistribution of the longitudinal velocity will be, and the more uneven 

the distribution of the difficulty of incipient motion of sediment along the width of the river will be. For a uniform 

gravel bed surface, the sediment on the concave bank side is easier to move, and it is more difficult for the 

sediment near the convex bank to move; for the uneven gravel bed surface, the incipient motion sediment particle 

size is larger on the concave side than that on the convex side. This phenomenon is consistent with the actual 

measurement results obtained by Clayton and Pitlick
[25]

 (Clayton and Pitlick found through field measurement that 

the particle size of the sediment on the concave bank is larger than that on the convex bank
[25]

). This makes it easy 

for the median size of the bed sediment on a relatively balanced non-uniform gravel bed surface to decrease from 

the concave bank to the convex bank in the bend where the secondary flow is fully developed, i.e. lateral sediment 

separation will occur on this bed surface. 

 

3.2 Influence on the direction of movement after incipient motion 

 

The uneven distribution of longitudinal velocity and lateral velocity in the bend along the width of the section
[25]

 

will also produce an angle θ that is non-uniformly distributed along the width of the section, as shown in Fig. 7. 
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Fig 7: Transverse distribution of θ 

 

 
Fig 8: Direction of sediment motion 

 

It can be seen from the figure that there is a non-uniform distribution of the included angle of velocity in the bend 

section along the river width. In any case of incoming flow, the included angle of flow velocity is smaller in the 

range from the quay wall to 0.4B, and the included angle of flow velocity is larger in the range of n=-0.6B~0.6B 

than that near the quay wall. The flow velocity at the bottom of the secondary circulation in the bend is directed 

from the concave bank to the convex bank. Therefore, it indicates that the greater the included angle of the flow 

velocity is, the more the movement direction of the sediment will be shifted to the convex bank after the incipient 

motion. That is, the stronger the secondary flow is, the more obvious the trend of lateral sediment transport will be, 

as shown in Fig. 8. The non-uniform distribution of the included angle of flow velocity in the bend section along 

the width of the river corresponds to the different degrees of different bank transport of sediment in the bend on the 

basis of the same bank transport. The included angle is smaller from the quay wall to 0.4B, and larger in the range 

of n=-0.6~0.6, indicating that the sediment particles in the nearshore area are mainly transported on the same bank 

after the incipient motion of the sediment particles, and as they approach the center of the river, the phenomenon of 

different-bank sediment transport is gradually becoming apparent. In the large-area incipient motion area (within 

the range of n=-0.6~0.6), the included angle of the sediment flow velocity on the concave bank side is smaller than 

that on the convex bank side. That is, when the rolling step length is constant after the sediment incipient motion, 

the closer to the concave bank side the sediment particles are, the longer the transport distance to downstream will 

be, and the shorter the transport distance to the convex bank will be. Under the combined effect of sand transport 

on the same bank and different banks, the bed surface shape in a bend is inevitably different from that in a straight 

river. At the same time, it can be seen from Fig. 7 that as the intensity of the incoming flow increases, the range of 

change of the included angle of velocity along the width of the river increases, and the included angle of movement 

of sediment particles becomes smaller on the concave bank side after the incipient motion, while it becomes larger 

on the convex bank side. 

 

Ⅳ. Conclusions 
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Based on the theoretical research of Bai Yuchuan and Wang Xin’s existing three-dimensional water flow structure 

in a bend
[27]

 and gravel incipient motion under the influence of two-way exposure
[17]

, this paper has proposed the 

calculation formula of the velocity of gravel incipient motion under the action of bend flow, and relevant actual 

measurement data have been used for verification. The research shows that: 

 

(1) Affected by the secondary flow in the bend, the sediment particles on the bed surface in the bend are affected 

by the combined action of the longitudinal and lateral water flow. The two-way flow velocity forms an included 

angle of flow velocity, which makes the longitudinal velocity required for the incipient motion of sediment to be 

reduced compared with that in a straight river. And the greater the intensity of the secondary flow in the bend is 

(the greater the degree of curvature of the bend is), the smaller the value of the longitudinal velocity required for 

incipient motion will be. 

 

(2) For a river with a certain degree of curvature, due to the uneven distribution of the secondary flow intensity 

along the river width, the incipient motion velocity and transport direction of the sediment particles in the same 

section of the bend are also unevenly distributed along the river width. The reverse distribution of the angle and the 

velocity difference along the width of the river shows that the longitudinal main flow determines whether the 

sediment on the bed surface moves and the particle size, and the secondary circulation mainly affects the direction 

of sediment transport after the incipient motion. 

 

(3) The incipient motion and transport of sediment in the bend section mainly occurs in the range of n=-0.6~0.6. 

The closer to the quay wall it is, the less the incipient motion of sediment is likely to occur. Under the action of the 

longitudinal main flow redistribution, in the range of n=-0.6~0.6, the sediment on the concave bank side is easier to 

move than that on the convex bank side. 

 

(4) The sediment close to both banks of the bend section is mainly transported on the same bank. Under the action 

of the secondary flow, within the range of n=-0.6~0.6, the sediment transport across the bank is obvious, and 

sediment particles transport obliquely downstream. The closer to the concave bank it is, the longer the relative 

distance of sediment transport downstream will be. 

 

(5) The non-uniformity of the incipient motion and transport direction of the sediment on the bed surface in the 

bend along the width of the river is the prerequisite for the lateral separation of the sediment in the bend. 

 

(6) It is found through comparison and verification that the results calculated by the deduced critical incipient 

motion velocity expression are in good agreement with the relevant data, which shows that the formula is suitable 

for solving the incipient motion velocity of the gravels under the action of the bend flow to a certain extent. 
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