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Abstract 

 
In order to reduce the missed detection error and the systematic error caused by acoustic resonance fluid level 

detection, liquid level estimation method based on evidence fusion mechanism is designed. It establishes a two 

dimensional dynamic system model of the standing wavelength. The state evidence of wavelength is obtained 

through the random set description of evidence, and the extension principle of random set is used to get the 

observation evidence of wavelength. The evidential reasoning (ER) rule and dependent evidence fusion are used to 

fuse those evidence, and the estimation value of fluid level can be calculated from fused result based on pignistic 

expectation. The corresponding liquid level estimation experiment illustrates the validity and feasibility of the 

proposed method. 
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I. Introduction 

 

The acoustic fluid level detection method play an important role in the production, processing, transportation, 

reserve calculation, state and alarm monitoring of modern industry system
[1]

. It is widely used in petroleum, 

chemical industry, sewage treatment and other related fields. Most of these methods are operated in ultrasound 

region. However, barriers (such as bubbles, ripples and residues) often exist on liquid surface in the actual 

measurement environment, parasitic reflection phenomena caused by barriers will change ultrasound path, which 

limit the accuracy of ultrasonic measurement. 

 

Ref 
[2]

 presents a fluid level detection method based on low-frequency acoustic resonance. Due to the long wave 

length of low frequency sound wave, the diffraction phenomenon will occur when the sound wave encounter 

barriers, which can effectively avoid the measurement inaccuracy caused by parasitic reflection phenomenon. 

However, its measurement range (≤8.28 m) is limited by the initial resonance frequency (RF) and the sensitivity of 

receiving sound wave (microphone). Ref
[3]

 presents a liquid level measurement method based on fixed frequency 

range acoustic resonance principle, which uses a series of resonance frequencies in fixed frequency range (from 

1000Hz to 2500Hz) to replace the single initial RF. This method not only expands the measurement range by 

overcoming the problem of microphone sensitivity, but also improves the real-time performance of measurement. 

 

For improving the accuracy of measurement, ref 
[4]

 presents a liquid level error compensation method based on 

belief rule base. By analyzing the principle of acoustic resonance measurement, it is concluded that the principle 

error mainly comes from two aspects: 1.The error introduced by the height calculation formula approximately 

derived from the synthetic acoustic wave; 2.The influence of different sweep duration and sampling frequency on 

the measurement accuracy. Based on this, the compensation model of measuring height and three parameters is 

established, which makes the compensator learn the principle error compensation value corresponding to the 

measured value. However, in the industrial application environment, the detection system is easily affected by the 
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complex external noise, and the energy attenuation of sound wave will occur in the transmission process, which 

will cause the acquisition of some resonance points is missing and inaccurate. The missed detection will cause the 

extraction bias between the collected resonance point and its true value. In addition, the inherent errors of the 

speaker, microphone and temperature sensor are transmitted with the conversion formula, resulting in the final 

detection error. The error caused by transmit/receive acoustic wave system in acoustic resonance level gauge, 

which can be called systematic error. These problems have seriously affected the anti-interference ability and the 

accuracy of acoustic resonance method, thus limiting its wide application in various fields. 

 

In response to the above-mentioned problems, this paper presents a novel acoustic fluid level estimation method 

based on evidence fusion mechanism. Firstly, it establishes a two dimensional dynamic system model based on the 

relationship between any three adjacent resonance points, which can estimate the missed resonance point and make 

up for the inaccurate resonance point. Secondly, the state/observation noise of systematic error can be 

approximated to triangle possibility distribution respectively. It constructs the state evidence and observation 

evidence by adding those noise via the random set description. Thirdly, the recursive algorithm based on evidence 

fusion mechanism is proposed to estimate the wavelength of resonance point at each moment. The ER rule and 

dependent evidence fusion are used to fuse those evidence of recursive algorithm. Finally, the detected height can 

be calculated from the fused result based on pignistic expectation. 

 

II. A novel detection method based on two dimensional dynamic system model 

 

2.1 The detection principle based on fixed frequency range acoustic resonance 

 

The structure of level gauge is shown in Figure 1, including a controller, a sound guide tube, a temperature sensor, 

a sound emission device, a sound receiving device, etc. The sound emitting/receiving devices are cheap speaker 

and microphone respectively. The sound guide tube is inserted into the liquid to be measured perpendicular to the 

liquid surface. The microphone, speaker and temperature sensor are installed at one end of the sound guide tube, 

and the microphone and the speaker are on the same horizontal plane. The other end of the sound guide tube is 

below the liquid surface, and the detected height is the distance between the plane of the speaker/microphone and 

the liquid surface. The speaker is perpendicular to the measured liquid surface and continuously emits low-

frequency sound waves in a fixed frequency range. The sound wave reflected by liquid surface and the emitted 

sound wave are synthesized into synthesis wave in sound guide tube. The emitted/reflected sound wave is 

expressed as y1/y2, respectively. 

controllor

d

speaker

airing

microphone

temperature 

sensorL

surface

detected 

height

waveguide

w

total height

level height

h=w-L

    
Fig 1: Structure of level gauge 
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2 cos 2 ( )
L

y A π Pt
λ

 
                                                                       

(2) 

Synthesis wave y is derived as 

2
2 cos( )cos(2 )

L
y A π πPt

λ


                                                               
(3) 

where A denotes the amplitude, λ and P denote the wavelength and frequency respectively, and L denotes detected 

height. When the amplitude of synthesis sound wave is the maximum, the relationship between L and λ should 

meet the following formula 

( )
1,2,3

2

k
L n k k


 （ ）

                                                              
(4) 

where λ(k) denotes the wavelength of standing waves, k denotes the k
th 

standing waves. λ(k) can be calculated as 

( )
( )

c
λ k

f k


                                                                               
(5) 

Where f(k) denotes the corresponding resonance frequency of standing waves.The sound velocity c= 331.4 0.6T  

and T is temperature in detection environment.  

 

As a result, ref[2] take (5) into (4) and get: 

(331.4 0.6 )

2 ( )

n k T
L

f k



（ ）

                                                                
(6) 

where, n(k) is given as : 

 
( )

( 1) ( )
f k

n k
f k f k


 

（ ）
                                                          

(7) 

and 

( 1) ( ) 1n k n k  
                                                                    

(8) 

Here, in order to ensure that n(k) is a positive integer, (6) can be expressed as   

                
( )

2 ( )
n k c

L
f k

           
                                                      

   (9) 

The height of the fluid level can be calculated as 

                                    h w L                                                                           (10) 

where 

                             

1

1

( )
2 ( )

( 1)

M

k

n k c
f k

L
M





  
  

  




                                           
    (11) 

is the mean of M-1 times measurements. 

 

Obviously, from (11), it can be seen that the accuracy of this liquid level detection method mainly depends on the 

accurate acquisition of f (k) or λ (k). However, in the industrial application environment, the detection system is 

easily affected by the complex external noise, and the energy attenuation of sound wave will occur in the 

transmission process, which will cause the acquisition of some resonance points is missing and inaccurate.In 

addition, the systematic error (accuracy difference of various sensors in transmit/receive acoustic wave system) 

will also cause the extraction bias between the collected resonance point and its true value. The above problems 

have seriously affected the accuracy and anti-interference ability of this method, thus limiting its wide application 

in various fields. 

 

2.2 Two dimensional dynamic system model of the wavelength under bounded noises 

 

In the new method, in the process of acquiring the resonance points in the synthetic wave, it is no longer limited to 

extracting the detected resonance points in observation domain. Instead, each resonance point is estimated by a 

dynamic system model based on the relationship between any three adjacent resonance points, which can make up 
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for the missing resonance points and compensate for the inaccurate resonance points. At the same time, by 

constructing and adding observation noise and state noise to the dynamic system model, the anti-interference 

ability of new method can be effectively enhanced. From(4), obviously, we can get a set of equations  

 

                          
( 1)

( 1)
2

k
L n k

 
                                                                  (12) 

                                                         
( )

( )
2

k
L n k




                                                                    
  (13) 

                                             
( 1)

( 1)
2

k
L n k

 
 

                                                           
     (14) 

 

Where ( 1)k  , ( )k and ( 1)k  denote the wavelength of the three adjacent resonance points in the standing 

waves respectively. Substituting (12) into (13), we obtain 

 

                                     

                                                   

              (15) 

 

From(15), the value of detected height L can be obtained by any two adjacent wavelengths. In addition, the 

dynamic equation of wavelength can be obtained in the following forms through the simultaneous (12), (13) and 

(14) 

                                          

                                                 

        (16) 

 

Equation(16)  is further reduced to the first-order nonlinear difference form:              

                       

                                            

        (17) 

 

By transforming equation (16) into equation (17), a new vector is introduced, which contains two original state 

vectors. The dynamic systems model is expressed as follows 

        

                            

    (18) 

 

Where f describes the function relation of x (k+1) and x (k). g describes the unction relation of x(k+1) and z(k+1) . 

x(k+1) is expressed as  

                                                  

                                                         

   (19) 

 

And the state equation of dynamic systems modeled can be expressed as 
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Similarly, the observation equation of dynamic systems modeled can be expressed as  
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( 1) ( 1)

( 1)
( 2) ( 2)

k w k
z k

k w k





    
     

                                                  

  (21) 

 

v(k) denote k
th 

state noise, and w(k) denote k
th 

observation noise. These two noises are independent and identically 

distributed bounded noise. 

 

III. Foundations of evidence fusion mechanism 

 

The main concept and theory of evidence fusion mechanism are presented in section 3.1 and 3.2. There are more 

detailed theoretical explanations and applications in ref 
[5-7]

. 

 

3.1 Evidential reasoning(ER) theory 

 

The research object of ER rules is the element and subset in the discernment frame Θ= {h1,…, hN}. Θ contains all 

the possibilities, and the proposition (or element) is mutually exclusive in Θ. 2
Θ
 denote the power set of Θ.The 

evidence can be expressed as 
[5-6]

 

                  , ,,  ,  ,  1j θ j θ jθ Θ
e θ p θ Θ p


   

                                                   
(22) 

Where p
θ,j 

indicates  degree of belief for this evidence. (θ,p
θ,j

) is an element of ej, and θ is any subset of Θ except 

for the empty set. (θ,p
θ,j

) is referred to as a focal element of ej if p
θ,j

>0. rj and wj represent the reliability and 

importance of a piece of evidence respectively. rj describes ability to provide accurate information for a given 

problem, and reflects the inherent characteristics of the information source. wj depends on other fused evidence and 

the specific occasions of application.The belief distribution including rj and wj can be expressed as 

            , ( ),,  ,  ;  ( ),  j θ j P Θ jm θ m θ Θ P Θ m  
                                        

       (23) 

Where 
, jmθ measures the degree of support for θ from ej, defined as follows 

                   

 
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  (24) 

Where , ,j j jm w pθ θ .  , 1 1rw j j jc w r    is uniquely determined to satisfy , jΘ
m


 θθ

 ( ), 1P Θ jm  . ER fusion rule is 

defined as 

                  , (2), (2)
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, (2) 1 ,1 0 ,2
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ˆ (1 ) (1 )e

B C

B C

m r m r m

m m Θ

  




 

     

  
                                         

        (26) 

Where
, (2)θ ep is the fusion belief function. It represents the combined belief degree of  independent evidence e1 and 

e2 support for the proposition θ. 

 

3.2 Basic concepts in dependent evidence fusion  

 

In ER Theory, it requires two pieces of evidence to be independent of each other, but  evidence dependence often 

exist in practice. Ref[8] pointed out that if the evidences are derived from multiple independent information 

sources, when different evidence uses the same information source, these evidences are often mutually 

dependent.The energy En(E)  is expressed as: 
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( )
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| |
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n E

i

i i
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E

A

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       (27) 

where |Ai| is the number of elements , n(E) is the number of focal elements contained in evidence E. En(E) = 0 or 

En(E) = 1 means the smallest or the largest, respectively. 

For evidence 
11 1=( , )mE F  and evidence

2 2 2=( , )mE F  defined on Θ, if E1 and E2 are derived from the same 

independent information, the energy of the intersection part between E1 and E2 can be defined as 

                                   

|{ }|

1 2

1
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| |

ij

ij

D

ij

ij ij
D

m D
E E

D

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     (28) 

Where Dij denotes intersection focal element, |{Dij}| is the number of Dij. The degree dependent of E1 and E2 is 

shown as 

                         1 2

1 2

1 2

2En( , )
( , )

En( ) En( )

E E
D E E

E E



                                                 

    (29) 

The energy of E1 and E2 can be distributed proportionally. The energy Enf(E1) and Enf(E2) can be calculated as 

                          2

1 1 1 2

1

En( )1
En ( ) En( ) 1 ( , )*

2 En( )
f
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E E D E E

E

 
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The dependency coefficient of two evidences is defined as 

                                2

12 1 2

1

En( )1
( , )
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E


                                                

       (32) 

                                    1

21 1 2

2
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E
R D E E

E


                                                    

   (33) 

The independent evidence corresponding to E1 and E2 can be expressed as E1 and E2, BBA functions of E1 and 

E2 are shown as: 

                 
12 1

1
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    (35) 

 

The ER rule is used to fuse two evidences ( E1 and E2), so as to realize dependent evidence fusion. 

 

IV. Fluid Estimation based on ER Rule and Dependent Evidence Fusion 

 

Figure 2 shows the flowchart of the proposed fusion mechanism. The process is described in detail in 6 steps. 
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Fig 2: The flowchart of the recursive fusion mechanism 

 

4.1 Construct noise evidence 

 

Construct state noise v (k) and observation noise w (k) into evidence ( , )v v

k kpF  and ( , )w w

k kpF . πv and πw denote 

approximate the possibility distribution of v(k) and w(k) respectively. For any α(0,1], α cut set of πv is  

                 
[ , ] { | ( ) }v v

α α vπ π v π v α   
                                                            (36) 

The corresponding belief distribution can be expressed as 
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                             (37) 

 

  The obtained evidence of v at each moment is the same. For the convenience of subsequent calculations, it is 

expressed as 1 1 2 2

1 1( , ) ( , ), ( , )
T

v v v v v v

k k k k k kp p p 
   F F F where 

  
0 0 1 1 1 1

1 1 1 1 1 1 1 1
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 
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F                               (38) 
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 

     

 F .                             (39) 

The noise evidence can be shown as 

1 1 2 2

1 1( , ) ( , ), ( , )
T

w w w w w w

k k k k k kp p p 
   F F F .                                   (40) 

4.2 Obtain state prediction evidence at time k+1  
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The state evidence x( , )x

k kpF  of |k kx  can be obtained by adding noise to |k kx . 
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Thus, taking ( , )v v

k kpF  and ( , )x x

k kpF  as the inputs of state equation ( 1) [ ( ), ( )]x k f x k v k  , we can get the state 

prediction evidence. 

 

4.3 Obtain observation prediction evidence 
1|

z
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Since z

1 1( , )z

k kp F and z

1| 1|( , )z

k k k kp Ff come from sensor and observation equation respectively, which are two 

independent information sources, so both of them can be fused using ER rule with weight and reliability. So we get 

the fused result 
1 1 1

ˆˆ ˆ( , )Z Z Z

k k kE p   fF to fuse 
1| 1|( , )z z

k k k kp fF  and z

1 1( , )z

k kp F in observation domain. And new evidence 

1 1
ˆ ˆ( , )x x

k k Rf can be calculated using inverse function 1

1(z )kg


and extension principles in state domain. 

 

4.5 Get state estimation evidence 
1| 1 1| 1

ˆ( , )
x

x

k k k kp   fF to fuse new evidence 
1 1

ˆ ˆ( , )x x

k k fR  and  state prediction evidence 

1| 1|( , )x x

k k k k R  through dependent evidence fusion 

 

1| 1 1| 1
ˆ( , )

x
x

k k k kp   fF  can be obtained by fusing new evidence
1 1

ˆ ˆ( , )x x

k k fR  and state prediction evidence 1| 1|( , )x x

k k k k R . 

However, since the new evidence 
1 1

ˆ ˆ( , )x x

k k Rf is obtained by observation prediction evidence 1| 1|( , )z z

k k k kp fF and 

observation evidence z

1 1( , )z

k kp F , and 1| 1|( , )z z

k k k kp fF  is related to 1| 1|( , )x x

k k k k R in step 3), so 
1 1

ˆ ˆ( , )x x

k k fR and 1| 1|( , )x x

k k k k R

are also dependent on each other. Those two dependent evidences can be fused using independent evidence fusion 

theory in section 3.2. 
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4.6 Get state estimation value 1| 1k kx    

 

The state estimation value 1| 1k kx   can be obtained by calculating pignistic expectation of 
1| 1 1| 1

ˆ( , )
x

x

k k k kp   fF .The 

wavelength of each step can be estimated through iteration. 

 

V. Parameter training method of evidence reasoning fusion model 

 

In section IV, the initial parameter set  ,z z

op oP w w is used in the state estimation process, and finally the level 

estimation value is obtained. z

opw  and z

opw represent the weight parameter set to be optimized for observation 

evidence and observation prediction evidence respectively. However, the ER reasoning model constructed from the 

initial parameter set cannot accurately obtain the final liquid level estimate.Therefore, the objective function of  the 

parameter optimization model is 

 
2

1

1 ˆmin ( ) ( )
S

s s

S

P L L
S




                                                                   (47) 

                         0 , 1z z

op ow w                                                                          (48) 

 

Where L represents the true length, L̂ represents the estimated value. The optimization process can be achieved by 

using gradient-based methods or nonlinear optimization software packages. 

 

VI. Liquid Level Estimation Tests and Comparative analysis 

 

6.1 Liquid level estimation tests  

 

The experimental equipment is shown as figure 3. The audio signal is generated by the audio card of the embedded 

controller, and the sound wave is emitted by the driver speaker.The sound frequency  increases from fl = 1000 Hz 

to fh = 2500 Hz at a constant speed within 5 seconds.The composite wave is captured by the microphone and 

further processed by the controller (STM32F756NG). In the experiment, the detection height L=1.6m, the sound 

velocity c=347.3 m/s, and the temperature T=26.5°C. 

 
 

Fig 3: Experiment set-up 
 

The synthesized sound wave collected by the microphone is shown in Figure 4, and 14 resonance frequency points 

are generated in total. Then, the frequency and wavelength corresponding to the resonance frequency point are 

extracted in the amplitude detection through fast Fourier transform and smoothing filter 
[8,9]

, as shown in Figure 5. 

Obviously, because the synthesized sound wave is influenced by external noise and sound wave attenuation, the 

missed detection phenomenon occurs in the extraction process of resonance frequency point. And 13 resonance 
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frequency points are extracted, and the information of 7th resonance frequency point is not extracted.The missed 

resonance point will seriously reduce the accuracy in the subsequent liquid level calculation. 

 

Fig 4: Waveform graph (L=1.6m)                    Fig 5: Resonance frequencies (L=1.6m)  

 

The state/observation noise(v/w) is approximated to triangle possibility distribution respectively
[10]

. In order to 

construct state noise evidence,we use a high-precision oscilloscope to collect the synthetic sound waves emitted by 

the sound-producing equipment (speakers) in a fixed frequency range, and select and calculate the error of 100 

frequency points.The value range of the state noise is calculated to be plus or minus three times the standard 

deviation of the error. The evidence can be structured as shown in Table 1. 

The value range of observation noise depends on the sound receiving equipment, smoothing filter and Fourier 

transform algorithm. We collect 42 sets of sample data in the range L=0.6 m to L=10.8 m, and use fast Fourier 

transform and smoothing filtering algorithm to extract the wavelength observation value corresponding to the 

standing wave.Then, according to the error between theoretical value (true value) and observed value, observation 

noise evidence ( , )w w

k kpF can be structured as shown in Table 2. 

 

Table 1 Evidence of v (k)                                       
v

kF  [-0.0043,0.0043] [-0.0029,0.0029]    [-0.0015,0.0015] 

v

kp  1/3 1/3 1/3 

 

Table 2 Evidence of w (k) 
w

kF  [-0.0433,0.0589] [-0.0263,0.0419] [-0.0093,0.0249] 

w

kp  1/3 1/3 1/3 

 

From figure 4 and formula (5), we can calculate the first and second standing wave wavelength ( 1 =0.3433m and 

2 =0.3151m) respectively. The initial observation value is (1) [0.3433, 0.3151]
T

z  , the first estimation result 

1|1
ˆ (1)T T
x z . After constructing state noise evidence 1 1( , )v vpF and observation noise evidence 1 1( , )w wpF , according to 

the iterative steps in section IV, we can obtain 1| 1|( , )Z Z

k k k kp fF  and z

1 1( , )z

k kp F  ,and use the ER rule to fuse those two 

evidence with weight and reliability in observation domain. Then the fused new evidence 1 1
ˆ ˆ( , )x x

k k fR and state 

evidence 1| 1|( , )x x

k k k k R  are combined with evidence independence in state domain. Finally, the wavelength value 

at each time can be estimated through the iterative algorithm, and the corresponding liquid level height can be 
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calculated by formula (4). In the estimation process, we set 
z z0.8 0.3op or r ， according to experience, and adjust 

optimized parameter 0.9862 =0.2015z z

op ow w ， according to parameter training method. 

 

6.2 Comparative analysis 

 

In order to further verify the validity and feasibility of this method, figure 6 gives estimation results of the direct 

observation method, the Nasreddine’s method and the proposed method. Obviously, there is missed resonance 

point ( (7)= 0.2091m) in the process of extracting resonance points, which makes the observation method lack a 

calculation result(L(7)=1.6042m) and seriously reduces the reliability and accuracy of the final result.The proposed 

method uses the two-dimensional system dynamic model about the standing wave wavelength, the standing wave 

wavelength of the next moment can be estimated accurately according to the information of the two adjacent 

moments. Our method can effectively overcome the missed detection phenomenon and improve the anti-

interference ability and accuracy of the acoustic resonance liquid level detection method. 

 

 
 

Fig6: Estimation results      

 

        Fig 7: Absolute values of estimation errors 

 

Figure 7 shows the absolute values of length estimation errors. The proposed method considering bounded noise 

can effectively suppress and reduce the influence of system noise on the liquid level estimation process. The 

dependent evidence fusion considering evidence relevance can make the estimation result more focused on the real 
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state. Table 3 lists more experimental results of different lengths, which further illustrate the validity and feasibility 

of this method. 

Table 3 More experimental results of different lengths 

Different methods True L(m) Err(m) Precision 

Direct measurement 

Nassreddine method 

Our method 

0.5 0.0220 

0.0128 

0.0068 

4.400% 

2.560% 

1.360% 

Direct measurement 

Nassreddine method 

Our method 

1.6 0.0460 

0.0156 

0.0111 

2.875% 

0.975% 

0.693% 

Direct measurement 

Nassreddine method 

Our method 

2.1 0.0452 

0.0156 

0.0078 

2.152% 

0.742% 

0.371% 

Direct measurement 

Nassreddine method 

Our method 

3.6 0.0331 

0.0129 

0.0099 

0.919% 

0.358% 

0.275% 

Direct measurement 

Nassreddine method 

Our method 

5.7 0.0684 

0.0088 

0.0067 

1.200% 

0.154% 

0.117% 

Direct measurement 

Nassreddine method 

Our method 

6.4 0.0880 

0.0139 

0.0063 

1.375% 

0.217% 

0.098% 

Direct measurement 

Nassreddine method 

Our method 

7.5 0.1060 

0.0180 

0.0069 

1.413% 

0.240% 

0.092% 

 

VII. Conclusion 

 

This paper presents a novel acoustic fluid level estimation method based on evidence fusion mechanism. This 

method can deal with the missed detection error and the systematic error caused by acoustic resonance fluid level 

detection.The proposed method establishes a two dimensional dynamic system model based on the relationship 

between  any three adjacent resonance points, and models state noise and  observation noise of systematic error as 

the triangular possibility distribution respectively, and then constructs the state evidence and observation evidence 

by adding those noise via the random set description. The recursive algorithm based on ER rule and dependent 

evidence fusion is proposed to estimate the wavelength of resonance point at each moment. The detected height 

can be calculated from the fused result based on Pignistic expectation. Compared with other algorithm, our method 

overcome the missed detection phenomenon and improve the anti-interference ability and accuracy of the acoustic 

resonance liquid level detection. However, there are some further work to do for enhancing the accuracy of the 

proposed method. For examples, (1) how to further improve the accuracy of the optimization algorithm for the 

parameter set, (2) how to combine error compensation method with state estimation method to further improve 

accuracy and reliability. In the future, the research on those problems should be further studied. 
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