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Abstract 

 

With the development of remote sensing technology and the commercialization of aerospace industry, the 

requirements of remote sensing observation will grow rapidly in the future, and the shortage of remote sensing 

resources and the conflict between observation tasks will become increasingly prominent. For the lack of mature 

data mining means for remote sensing user demand analysis and demand pre-processing, this paper proposes a 

novel association analysis method based on directed term graph-based double-layer FP-tree to extract users' remote 

sensing demands and observation target characteristics. Firstly, by analyzing the dependencies between the demand 

items, the directed term graph about user, target, payload and observation date is designed. Secondly, a double-

layer FP-tree based on the directed term graph is presented. Such a tree can effectively express the logical 

relationship between demand data and realize the data compression of common input parts, which features small 

data amount and fast operation. And then, an association rule analysis method based on FP-growth algorithm for 

remote sensing user demand mining is proposed. In the process of association analysis, the double-layer FP-tree is 

decomposed into four sub-FP-trees, and for each sub-FP-tree, FP-growth algorithm is adopted to generate frequent 

itemset. This frequent itemset generation process has some superior properties, i.e., the data set is scanned only 

twice, the search path is short, search range is small, and there is no need to generate candidate itemset, and no 

repeated frequent itemset is generated. Finally, a transaction set of remote sensing demands is analyzed to verify the 

effectiveness of the proposed method. Some conclusions are drawn in the end of this paper. 

 

Keywords: Remote sensing demand mining, user, association rule analysis, directed item graph, double-layer FP-

tree, FP-growth algorithm 

 

 
I. Introduction 

 

In recent years, with the development of space launch technology, satellite application technology, payload 

technology and other space support technologies, as well as the improvement of supporting software and hardware, 

aerospace science and technology has played an increasingly prominent role in national economy and national 

defense construction of all countries in the world. Due to the vigorous promotion of relevant policies of various 

countries and emerging space enterprises, the aerospace industry has entered the commercialization process in many 

fields, with the types and number of satellites in orbit increasing day by day. Remote sensing satellite, as an extremely 

important strategic resource, has achieved a dominant role in many fields such as the land and resources survey, the 

natural disaster emergency rescue, the urban construction and management, the earth’s environment monitoring and 

so on [1,2]. And a long-term and stable operation of earth observation satellite system will be established, then there 
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will be a large number of remote sensing satellite providing data services for users [3-6]. It can be imagined that the 

commercialization of remote sensing satellite application will cause an explosive growth trend of demand for remote 

sensing data from users such as government management departments, scientific research institutes and local 

enterprises, with various forms, contents and requirements [7-11]. 

 

However, resource shortage and demand conflict are urgent practical problems faced by remote sensing satellite 

management, and especially in the future, these problems will become more prominent. Therefore, mining the hidden 

information of users, observation targets, observation time intervals, sensor types and other demands from a large 

number of historical remote sensing demands is an important means to realize demand arrangement in advance, 

reasonable allocation of resources and guarantee the implementation of users’ remote sensing demands. In fact, some 

simple, intuitive rules can be artificially judged. For example, China’s aid agencies to Sudan usually submit remote 

sensing demands for damaged roads in rainy season in August every year. According to this rule, observation mission 

can be generated and submitted to remote sensing satellite data exchange center as soon as possible in order to obtain 

a better resource arrangement for observation. 

 

The difficulty of remote sensing user demand analysis is that the relations and rules among the parameters 

representing demands are implicit rather than explicit, which requires complex data analysis or operation to find out, 

and especially in the condition of a large amount of data, such a problem is particularly intractable [12,13]. In order 

to mine meaningful and potential demand rules from a large amount of remote sensing data, it is necessary to adopt 

some special data analysis methods [14-16]. Methods based on statistics or rule summaries can partly reflect the 

regularity of demands, but it is difficult to explore the relationship between different data and its impact of regularity 

[17]. Data mining is a new discipline that can find potential and valuable rules and knowledge from large quantities 

of data [18,19]. And it has been an effective tool to analyze huge amounts of data and may become an important 

technical means to solve the mining and analysis of remote sensing user demand. At present, data mining has been 

applied in many fields such as bioinformatics, medical diagnosis, and scientific data analysis. However, using data 

mining to analyze remote sensing user demand is rarely studied. 

 

In data mining, association rule analysis is a relatively independent algorithm field. It has a sound theoretical 

foundation, can solve a specific type of problems independently [20,21], and can be used to find meaningful 

connections hidden in large data sets [22,23]. Association rule analysis, also known as Market Basket Analysis, was 

originally proposed to discover interesting relationships in huge amounts of customer purchase data [24]. If retailers 

want to know the customer’s purchase habits and what other items the customer will purchase during a shopping trip, 

a basket analysis may be required. Association analysis is to analyze customers’ purchase habits by finding the 

relationship between the items they put into the “market basket”. Some relationship between items is called 

association. The finding of such associations could help retailers know which items are frequently purchased at the 

same time, thus helping them improve marketing strategies. 

 

Compared with the conventional Market Basket Analysis, remote sensing user demand analysis has many new 

features. First of all, remote sensing user demand mining is mainly user-oriented, focusing on the analysis of user 

preferences, to develop evidence-based, feasible and satisfactory observation plans for users. That is to say, the 

process of remote sensing user demand mining has a certain tendency, and the importance of each data is not equal. 

Secondly, there exist some certain logical relationships between different items. For example, to observe which target 

is determined by the user, and which payload is used is determined by both the user and the target; conversely, these 

logical relationships are not valid. Moreover, the value range of some items is limited. For example, the payload can 

be usually divided into optical payload, SAR payload and electronic reconnaissance payload (referred to as Elec. 

payload in the following paper), and the observation time interval usually can be several days, i.e., a week or a month. 

 

Apriori algorithm is the first association rule analysis algorithm and is one of the most classic algorithms for mining 

association rules [25,26]. This algorithm innovatively uses support measure-based pruning technique to restrain the 

exponential growth of the number of candidate itemsets, uses the strategy of level-wise traversal and “generate-test” 
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to generate frequent itemsets, and uses the Apriori principle to compress the search space. But its disadvantages 

include too many database scans and the generation of a large number of unnecessary itemsets [27]. Unlike Apriori 

algorithm, FP-growth algorithm uses FP-tree to generate frequent itemsets [28]. For some typical transaction sets, 

FP-growth algorithm is several orders of magnitude faster than the standard Apriori algorithm [29,30]. FP-tree is a 

compressed representation of input data that is constructed by reading transactions one by one and mapping each 

transaction to a path in the FP-tree. Because different transactions may have several items in common, their paths 

may partially overlap. The more paths overlap each other, the better the compression with FP-tree [31]. For remote 

sensing user demand mining, the good applicability of FP-growth algorithm is mainly reflected in the compression 

of data with limited range of observation time, payload type and other items. The larger the amount of data, the 

higher the degree of compression. If the FP-tree is small enough to be stored in memory, one can find frequent 

itemsets directly from the memory, rather than having to repeatedly scan the data stored on the hard disk. 

 

In this paper, a novel association rule mining algorithm based on directed term graph-based FP-tree is proposed to 

mine for the association rules among users, observation targets, payloads and observation dates from large quantities 

of historical remote sensing demand data. The remainder of this paper is organized as follows: In Sect.1, the issue of 

remote sensing user demand mining is described and its characteristics are analyzed. In Sect.2, related concepts and 

theorems involved in this paper are introduced. In Sect.3, according to the logical relationships between remote 

sensing demand items, a directed item graph is designed, a double-layer FP-tree based on the directed item graph is 

presented, and an association analysis method of remote sensing user demand based on FP-growth algorithm is 

proposed. In Sect.4, the proposed method is verified, and the conclusions are drawn in Sect. 5. 

 

II. The Description of Remote Sensing User Demand Mining Problem 

 
For a remote sensing demand, what the user cares about mainly include observation targets, payload types and 

observation time, but the status of these three demand items is not unequal. The user is most concerned about the 

observation target, followed by what payload and when to observe. Therefore, in a remote sensing demand 

transaction, there are four items: user, target, payload and observation time. Remote sensing user demand mining is 

different from conventional Market Basket Analysis, which is mainly reflected in the following five points: 

 

1. Remote sensing serves the user; thus, the user is the most important. 

 

2. For users, they are most interested in the observation target and will decide the type of payload and observation 

time. 

 

3. The target, the payload and the observation time are not completely independent. The type of payload depends on 

weather and what kind of target properties the user is interested in. The observation time may be related to the season, 

the satellite orbit motion and the periodic change of the target. 

 

4. There may be some correlations among observation targets, that is, users’ demand may need observations of many 

different targets to be satisfied. 

 

Here, some examples of remote sensing user demand data are given in Table 1. 

 

Table 1 Remote sensing user demand data 

No. User Observation target Payload type Observation date 

1 User A Target 1 CCD Aug. 3, 2019 

2 User A Target 1 CCD, SAR Aug. 5, 2020 

3 User B Target 2 SAR Sept. 27, 2020 

4 User A Target 2 SAR Sept. 16, 2020 



 CONVERTER MAGAZINE 

Volume 2021, No. 6 

 

ISSN: 0010-8189 

© CONVERTER 2021 

www.converter-magazine.info 

330 

 

 

According to the data in the above table, we can intuitively find out some simple results or rules: (a) User A has the 

most demands for remote sensing data and needs to be serviced preferentially; (b) User A observed Target 1 for two 

consecutive years, and the observation time was in early August, and the optical payload was adopted for both of 

them; (c) Target 2’s observations were usually made in the second half of the year with a SAR payload. (d) Both 

User A and User B have observation demands for Target 2 and we can recommend remote sensing data services of 

Target 1 to User B. 

 

Given the small amount of data in Table 1, not all of the above analysis results may be necessarily meaningful. 

However, so many rules can be drawn artificially from the only four remote sensing demands. It is conceivable that 

if large quantities of historical remote sensing user demand data are mined, a large number of meaningful information 

will be obtained. 

 

III. Related Concepts of Remote Sensing User Demand Mining 

 
3.1. Itemset 

 

Let  
m

I i i i
1 2
, , ,  be the set of all items. An itemset containing k items is called a k-itemset. Let  

N
T t t t

1 2
, , ,  

be the set of all transactions, each of which contains an itemset that is a nonempty subset and corresponds to a unique 

identifier labeled TID (Transaction ID). The width of a transaction represents the number of items in the transaction. 

If the itemset X is a subset of transaction tj, then transaction tj is said to contain the itemset X. An important indicator 

of an itemset is its support count, that is, the number of transactions containing a particular itemset, expressed as: 

 

     
i i i

count X t X t t T,   (1) 

 

Where   represents the number of elements in the set. 

 

For example, in Table 1, there are four transactions, the set of all items I = {User A, User B, Target 1, Target 2, CCD, 

SAR, 2020, 2019, Aug. Sept., Oct.}, the “ No.“ is TID, and all these transaction are 5-itemsets. If itemset X = {User 

A, Target 1}, then   count X 2 . 

 

3.2. Support and confidence 

 

An association rule is an implication expression of the form X Y , where symbol   represents association 

operation, and X and Y are disjoint itemsets, i.e., X Y . X and Y are called Left-Hand-Side (LHS) and Right-

Hand-Side (RHS) of association rules respectively. The strength of an association rule can be measured by its support 

and confidence. Support determines how often a rule is applicable to a given data set, that is, probability, while 

confidence determines how frequently itemsets in Y appear in transactions that contain X, that is, conditional 

probability. Support and confidence can be calculated by the following two expressions: 

 

 

 
 

sup  
count X Y

X Y
N

  (2) 

 

 
 
 

 
count X Y

conf X Y
count X

  (3) 
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For example, in Table 1, if X = {User A} and Y = {Target 1}, then the support and confidence of the association rule 

are respectively: 

 

    
  

   
count

sup
N

User A, Target 1 2
User A Target 1 0.5

4
  (4) 

 

    
  

  
   

count
conf

count

User A, Target 1 2
User A Target 1 0.67

3User A
  (5) 

 

Support is an important measure and has desirable property which can be used to eliminate meaningless rules and 

realize effective discovery of association rules. Confidence measures the reliability of the inference made by an 

association rule. For a given association rule X Y , the higher the confidence, the more likely it is that Y is 

contained in the transaction that contains X. 

 

It can be seen from the above definitions that association rule analysis method does not need data processing in 

advance. The analysis result completely based on the original data can truly and objectively reflect the essential 

relationship between data with a strong persuasive. It is worth mentioning that the inference derived from an 

association rule does not necessarily imply causality, but only suggests the simultaneous occurrence of the LHS and 

RHS. The association rule mining problem can be stated as followed: 

 

Definition 1. Association rule discovery refers to finding all the rules which satisfy support ≥ supmin and confidence ≥ 

confmin in a given set of transactions T, where supmin and confmin represent the minimum support threshold and the 

minimum confidence threshold, respectively. 

 

In the definition above, supmin and confmin are usually given by the user. It should be noted that the setting of supmin 

should be reasonable. Too small supmin will generate a lot of accidental association rules and increase the 

computational requirements, while too large supmin will easily lose meaningful association rules. The minimum 

support threshold supmin reflects the lowest statistical importance of the itemset, while the minimum confidence 

threshold confmin reflects the lowest reliability of the association rule. 

 

In order to improve the performance of association analysis algorithm, the mining process is usually divided into 

two parts according to support and confidence, namely frequent itemset generation and association rule generation. 

 

3.3. Frequent itemset generation 

 

The objective of frequent itemset generation is to find all the itemsets that satisfy the minimum support threshold, 

which are referred to as frequent itemsets. The itemset which is used to generate frequent itemset is called candidate 

itemset. In general, the computational requirements for frequent itemset generation are more expensive than those of 

rule generation. Therefore, the computation for generating frequent itemset can be reduced by reducing the number 

of candidate itemsets and the number of comparisons between candidate itemsets and transactions. To better 

understand the process of frequent itemset generation, two significant theorems are given as follows. 

 

Theorem 1. The necessary condition for the k-itemset to be frequent is that all its subsets are frequent. 

 

Theorem 2. If any subset of the k-itemset is not frequent, then the k-itemset is not frequent. 
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3.4. Association rule generation 

 

Finding association rules from frequent itemsets is association rule generation. The objective of association rule 

generation is to mine for all rules with high confidence from the frequent itemsets generated in the previous step. 

These rules are called strong rules. For frequent k-itemset, a total of 2k-2 association rules can be generated. 

 

For example, frequent itemset Y is divided into two nonempty itemsets X and Y X , and  X Y X  satisfies the 

minimum confidence threshold, then X and Y X  is a strong rule. Since rules are generated by frequent itemsets, 

they have already satisfied the support threshold. In addition, the support counts for these two itemsets have already 

obtained when the frequent itemsets are generated, so there is no need to scan the entire transaction sets again. The 

theorem holding for the confidence measure is as follows [32]. 

 

Theorem 3. If the rule  X Y X  does not satisfy the confidence threshold, then the rule   X Y X  must not 

satisfy the confidence threshold as well, where X’ is a subset of X. 

 

Although association rules determined only on the basis of support and confidence are persuasive to a certain extent, 

the limitation of confidence measure lies in that it ignores the support of itemset in the rule RHS, and the rule with 

high confidence may lead to misdirection [33]. In addition, the data’s dimension and volume in the actual database 

are always huge, which makes it easy to generate a large number of meaningless or uninterested association rules. 

Therefore, some other objective measures are usually needed to further filter the association rules generated based 

on support and confidence. In this paper, a measure called lift is adopted to further evaluate the generated association 

rules and defined as follows: 

 

 
 
 

 
   sup

 
  



conf X Y N count X Y
lift X Y

Y count X count Y
  (6) 

 
The above expression represents the ratio of the probability of the occurrence of Y on the basis of the occurrence of 

X to the probability of the occurrence of Y alone. 

 

IV. Mining and Analysis of Remote Sensing User Demand 

 
Considering many repeated items in the historical remote sensing user demand data, this paper adopts FP-growth 

algorithm to analyze the remote sensing user demand. FP-growth algorithm uses a compact data structure called FP-

tree to organize data and can extract frequent itemsets directly from this structure. This algorithm is completely 

different from the frequent itemset generation method of Apriori algorithm. 

 

4.1. Directed item graph-based double-layer fp-tree 

 

Different from the conventional Market Basket Analysis, not all the items in the remote sensing demand data are 

related. According to the prior information of remote sensing demand data characteristics, unassociated items can be 

pruned in advance to reduce the amount of calculation and eliminate meaningless association rules. In this paper, a 

directed item graph is designed, which reflects the directed dependency relationships between each item in the remote 

sensing demand transaction. 
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User

Target

Payload

Date

 
Fig 1: Directed item graph of remote sensing demand items. 

 

In this graph, the observation target is determined by the user, the payload is determined by both the user and the 

target, and the observation date is determined by both the user and the target too. There is no necessary connection 

between the payload and the observation date. For example, the user determines when and use which payload to 

observe which target, and the target characteristics determine when and use which payload can make the observation 

effect best. However, such logical relations are not valid conversely, thus the graph in Figure 1 is directed. 

 

Based on the above analysis, a double-layer FP-tree based on directed item graph is presented here. The purpose of 

constructing a FP-tree with double layers is to cut off the relationship between the payload and the observation date. 

The conventional generation method of FP-tree is based on the support count of frequent 1-itemsets, but taking the 

uniqueness of remote sensing demand transactions into account, the generation of FP-tree in this paper is based on 

both the logical relationship of items in Figure 1 and the frequent 1-itemsets, that is, only the items with connections 

may have associations. In the process of remote sensing demand mining, the demand of users is the most important, 

followed by target properties that can be mined from the historical remote sensing user demand data. 

 

Next, take the demand data in Table 1 as an example to generate a double-layer FP-tree proposed in this paper. The 

generation process of this double-layer FP-tree is shown in Figure 2, where Target 1 and Target 2 are abbreviated to 

“T1” and “T2”, respectively. 

 

A:1

T1:1

Aug.:1

CCD:1

null

Layer 1

Layer 2

2019:1

A:2 B:1

T1:2

2020:1

Aug.:1 Aug.:1
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SAR:1
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2020:1

Sept.:1

null

2019:1 2020:1

A:2 B:1
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2020:1

Aug.:1

T2:1

CCD:2
SAR:1

SAR:1

T2:1

SAR:1

Sept.:1

2020:1

Sept.:1

null

2019:1 2020:1

T1:2

2020:1

Aug.:1

CCD:2
SAR:1

2019:1

A:2

null

Aug.:1 Aug.:1

 
Fig 2: The generation process of the directed item graph-based double-layer FP-tree. 

 

Initially, the FP-tree contains only one root node, represented by” null”. Then, according to each transaction in Table 

1, the FP-tree is expanded as follows: 

 

1. Scan the data set, determine the support count for each 1-itemset, and discard the infrequent itemset according to 

the minimum support threshold. Due to the small amount of data in the figure above, the support threshold was not 

considered here in the process of generating FP-tree. 

 

2. Scan each transaction in the data set again and build the FP-tree. Read the first transaction {User A, Target 1, 

CCD, 2019, Aug.} and create node “User A” and “T1”. Then create node “CCD” in the first layer and create node 

“2019” and “Aug.” in the second layer, forming path null → User A → Target 1 → CCD and path null → User A 

→ Target 1 → 2019 → Aug. All nodes on this path are counted as 1. 



 CONVERTER MAGAZINE 

Volume 2021, No. 6 

 

ISSN: 0010-8189 

© CONVERTER 2021 

www.converter-magazine.info 

334 

 

 

3. Read the second transaction {User A, Target 1, CCD, SAR, 2020, Aug.}. Since this transaction shares nodes “User 

A” and “T1” with the first transaction, it is only necessary to create nodes “2020” and “Aug.” It can be seen that the 

path “null → User A → Target 1” overlaps between the first transaction and the second transaction, which reflects 

the compressibility of FP-tree for data. 

 

4. Each transaction is read repeatedly and the corresponding path is generated according to the above process. Finally, 

in order to mine the properties of the observation target, the same items on the same target path need to be connected, 

and finally the FP-tree on the far right in Figure 2 is formed. 

 

It can be seen from Figure 2 that, firstly, the first layer of the generated double-layer FP-tree is the payload type and 

the second layer is the observation date. These two layers are connected with users and observation targets, but they 

are not connected with each other. Secondly, the observation targets required by different users may be the same. 

For example, both User A and User B have observation demands for Target 2. In order to mine for the properties of 

Target 2, the same items associated with Target 2 need to be connected regardless of the demands of users, as shown 

by the green dashed arrow in the sub-figure on the far right. 

 

4.2. Frequent itemset generation based on fp-growth algorithm 

 

FP-growth is an algorithm that generates frequent itemsets from FP-tree by exploring the tree in a bottom-up fashion. 

FP-growth algorithm uses the divide-and-conquer strategy to decompose a problem into smaller sub-problems. Since 

the sub-problems are disjoint, FP-growth algorithm will not generate any repeated itemset. 

 

In this paper, based on the double-layer FP-tree generated in the previous section, FP-growth algorithm is adopted 

to find frequent itemset. Due to the directed dependency relationship among items in remote sensing user demand 

transactions (as shown in Figure 1), the generated double-layer FP-tree needs to be decomposed. The decomposition 

of double-layer FP-tree is mainly divided into two steps. The first step is user-based and target-based decomposition, 

and the second step is layer-level decomposition. The decomposition process is shown in Figure 3. 

 

Double-layer FP-tree

Layer 1 Layer 2

Layer 1 Layer 2

User-based FP-tree

Target-based FP-tree

 
Fig 3: The decomposition process of double-layer FP-tree. 

 

User-based decomposition is mainly used to mine for the remote sensing demands of every user, while target-based 

decomposition is mainly used to mine for the target properties. Layer-level decomposition is mainly used to separate 

payloads and observation dates. Taking Figure 2 as an example, the first step is to separate User A from the double-

layer FP-tree, as shown in the left figure in Figure 4. In the second step, the double-layer FP-tree of User A is further 

decomposed into two single-layer FP-trees, as shown in the two figures on the right in Figure 4. 

 



 CONVERTER MAGAZINE 

Volume 2021, No. 6 

 

ISSN: 0010-8189 

© CONVERTER 2021 

www.converter-magazine.info 

335 

 

A:2

T1:2

2020:1

Aug.:1 Aug.:1

CCD:2
SAR:1

T2:1

SAR:1

Sept.:1

null

Layer 1

Layer 2
2019:1 2020:1

A:2

T1:2

CCD:2
SAR:1

T2:1

null

A:2

T1:2

2020:1

Aug.:1 Aug.:1

T2:1

null

2019:1 2020:1
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Fig 4: User A-based double-layer FP-tree decomposition. 

 

FP-growth algorithm is used to generate the frequent itemsets of the two FP-trees on the right in Figure 4 respectively, 

and the combination of the two frequent itemsets generated from these two trees is the frequent itemsets of User A. 

Two points should be noted in the generation process of frequent itemsets: (a) in the first layer, only the frequent 

itemsets with payload suffix are generated, and the frequent itemsets in the second layer are generated normally; (b) 

Since this FP-tree is for User A, each generated frequent itemset needs to contain item “User A”. It is not difficult to 

find that the generation process of frequent itemsets does not produce repeated itemsets. Figure 5 shows the 

remaining decomposition results of the double-layer FP-tree in Figure 2, and these sub-FP-trees are the 

decomposition results based on User B, Target 1 and Target 2, respectively, from left to right. 

 

T2:1

SAR:1

T2:1

SAR:1

Sept.:1

2020:1

Sept.:1

null

Layer 1

Layer 2

2020:1

T1:2

2020:1

Aug.:1 Aug.:1

CCD:2
SAR:1

null

2019:1

B:1

T2:1

SAR:1
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null
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Fig 5: Double-layer FP-tree decomposition results based on User B, Target 1 and Target 2, respectively. 

 

After the frequent itemset generation using the above method, the association rule generation method introduced in 

Sect. 2 can be used for further remote sensing user demand mining. 

 

V. Transaction Case Analysis 

 

In this section, the proposed data mining method based on the directed item graph-based double-layer FP-tree is used 

in the association rule analysis of a group of historical remote sensing demand cases. Set the minimum support 

threshold as supmin = 0.2 and the minimum confidence threshold as confmin = 0.5. The historical remote sensing user 

demand transactions are listed in Table 2. 

 

Table 2 Remote sensing user demand transactions 

TID User Observation target Payload type Observation date 

1 User A Target 1 CCD, SAR Sept. 1, 2020 
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2 User A Target 1 CCD, SAR Aug. 24, 2020 

3 User A Target 2 SAR Jul. 10, 2019 

4 User A Target 2 SAR Jul. 2, 2020 

5 User B Target 2 CCD Jul. 20, 2020 

6 User B Target 2 CCD Jul. 5, 2020 

7 User B Target 4 CCD Jul. 8, 2020 

8 User C Target 1 CCD, SAR Sept. 15, 2019 

9 User C Target 3 Elec. Aug. 21, 2019 

10 User D Target 3 Elec. Aug. 21, 2019 

 

First, scan the entire transaction data and record the support count for each item, as shown in Table 3. 

 

Table 3 The support count of each 1-itemset 

Item Count Item Count Item Count Item Count 

User A 4 Target 1 3 2020 6 Sept. 2 

User B 3 Target 2 4 2019 4 CCD 6 

User C 2 Target 3 2 Jul. 5 SAR 5 

User D 1 Target 4 1 Aug. 3 Elec. 2 

 

In order to make the full use of data, according to the minimum support threshold, only the items with count of 1 in 

Table 2 are removed, and the others of the corresponding transaction are retained, as shown in Table 4. 

 

Table 4 Two transactions with infrequent 1-itemsets 

TID User Observation target Payload type Observation date 

7 User B / CCD Jul. 8, 2020 

10 / Target 3 Elec. Aug. 21, 2019 

 

Based on this, the double-layer FP-tree of the historical remote sensing demand transactions is established, as shown 

in the Figure 6. 

 

A:4 B:3
C:2 T3:1

T1:2

2020:2

Sept.:1

Aug.:1

T2:2

CCD:2
SAR:2

CCD:2

T2:2

SAR:2

2020:1

Jul.:1

T1:1

2019:1

Sept.:1

CCD:1
SAR:1

2020:2

Jul.:2

2019:1

Aug.:1

Elec.:1

CCD:1

2020:1

Jul.:1

Jul.:1

2019:1

T3:1

Elec.:1

2019:1

Aug.:1

null

Layer 1

Layer 2

 
Fig 6: Double-layer FP-tree of historical remote sensing demand transactions. 

 

Next, based on the demand mining method proposed in this paper, we take the user and the target with the most 

support counts respectively as the examples to conduct association analysis. For users, 1-itemset {User A} has the 
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most support counts, then decompose the double-layer FP-tree corresponding to User A by layer-level, as shown in 

the Figure 7. 

 

A:4

T1:2

2020:2

Sept.:1

Aug.:1

CCD:2
SAR:2

T2:2

SAR:2

2020:1

Jul.:1

Jul.:1

2019:1

Layer 1

Layer 2

null
A:4

T1:2

CCD:2
SAR:2

T2:2

SAR:2

null
A:4

T1:2

2020:2

T2:2

2020:1

Jul.:1

Jul.:1

null

 
Fig 7: The decomposition of User A-based double-layer FP-tree. 

 

For the decomposition result of User A-based double-layer FP-tree in Figure 7, it can be seen that the path containing 

itemset {Sept.} and the path containing itemset {Aug.} has only one respectively, or the support counts of these two 

1-itemsets do not satisfy the minimum support threshold. Thus, itemset {Sept.} or {Aug.} are pruned in the process 

of layer-level decomposition. Then, the FP-growth algorithm is adopted to generate frequent itemsets of these two 

sub-FP-trees shown in the right two sub-figures. The generated frequent itemsets are shown in Table 5, where the 

number after the colon represents the support count. 

 

Table 5 Frequent itemsets with regard to User A 

Suffix Frequent itemset 

SAR {User A, SAR}:4, {User A, Target 1, SAR}:2, {User A, Target 2, SAR}:2 

CCD {User A, CCD}:2, {User A, Target 1, CCD}:2 

T1 {User A, Target 1}:2 

T2 {User A, Target 2}:2 

Jul. {User A, Jul.}:2, {User A, Target 2, Jul.}:2 

2020 {User A, 2020}:3, {User A, Target 1, 2020}:2 

 

Since the frequent itemsets in the above table are all for User A, each frequent itemset must contain itemset {User 

A}. For targets, itemset {Target 2} has the most support counts, then decompose the double-layer FP-tree 

corresponding to Target 2 by layer-level, as shown in the Figure 8. 

 

T2:2

CCD:2

T2:2

SAR:2

2020:1

Jul.:1

2020:2

Jul.:2

Jul.:1

2019:1

null

Layer 1

Layer 2

T2:2

CCD:2

T2:2

SAR:2

null

T2:2T2:2

2020:1

Jul.:1

2020:2

Jul.:1

null

Jul.:2
 

Fig 8: The decomposition of Target 2-based double-layer FP-tree. 
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Then, the FP-growth algorithm is adopted to generate the frequent itemsets of these two sub-FP-trees. The generated 

frequent itemsets are shown in Table 6. Since these frequent itemsets are all for Target 2, each frequent itemset must 

contain the itemset {Target 2}. 

 

Table 6 Frequent itemsets with regard to Target 2 

Suffix Frequent itemset 

SAR {Target 2, SAR}:2 

CCD {Target 2, CCD}:2 

Jul. 
{Target 2, Jul.}:4, {Target 2, 2020, 

Jul.}:3 

2020 {Target 2, 2020}:3 

 

According to the association rules shown in Table 5 and Table 6, although there is an overlapping itemset {Target 

2} between User A-based and Target 2-based double-layer FP-trees, there is no repeated frequent itemset generated, 

which verifies the rationality and effectiveness of the proposed directed item graph-based double-layer FP-tree. The 

generation process of frequent itemsets for User B, User C, Target 1 and Target 3 is the same as that for User A and 

Target 2, thus this paper will not repeat it here and only gives the generation results of these frequent itemsets, as 

shown in Table 7. 

 

Table 7 Frequent itemsets with regard to User B, User C, Target 1 and Target 3 

Suffix Frequent itemset 

SAR {Target 1, SAR}:3 

CCD {User B, CCD}:3, {User B, Target 2, CCD}:2, {Target 1, CCD}:3 

Elec. {Target 3, Elec.}:2 

T2 {User B, T2}:2 

Jul. 
{User B, Jul.}:3, {User B, 2020, Jul.}:3, {User B, Target 2, Jul.}:2, {User B, Target 2, 

2020, Jul.}:2 

Aug. {Target 3, Aug.}:2, {Target 3, 2019, Aug.}:2 

Sept. {Target 1, Sept.}:2 

2019 {User C, 2019}:2, {Target 3, 2019}:2 

2020 {User B, 2020}:3, {User B, Target 2, 2020}:2, {Target 1, 2020}:2 

 

Based on the discovered frequent itemsets, association rules can be obtained by calculate their support, confidence 

and lift. Some representative association rule analysis results are presented in Table 8. 

 

Table 8 The analysis results of the generated association rules 

No. Association rule Support Confidence Lift Analysis result 

1 {User A} → {SAR} 0.4 1 2 

All demands of User A contain SAR, and in all SAR 

requirements, User A has a high proportion, which 

indicates that User A is interested in SAR images. 

2 {Target 2} → {Jul.} 0.4 1 2 All observations of Target 2 are in July. 

3 
{User A} → {Target 2, 

Jul.} 
0.2 0.5 1.25 User A usually requires Target 2 observation in July. 

4 
{User B} → {T2, 2020, 

Jul.} 
0.2 0.67 2.23 

The demands of User B are mainly Target 2 in Jul. 

2020. 

5 {Target 3} → {Elec.} 0.2 1 5 Demands of Target 3 are all required Elec. payload. 
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In these association rules, the support and the confidence all satisfy the thresholds supmin = 0.2 and confmin = 0.5, in 

addition, the lift measure is larger than 1, both of which illustrate the given association rules are meaningful. 

 

6. Conclusions 

 
In this paper, a novel association rule analysis method based on directed item graph-based double-layer FP-tree is 

proposed to address the data mining issue of the remote sensing user demand. This method features the discovery of 

the intrinsic relationship between demand items from a huge number of historical remote sensing demand data. 

Firstly, by analyzing the logical relationship between demand items, the directed term graph of user, target, payload 

and observation date is designed. Secondly, a double-layer FP-tree based on the directed term graph is presented, 

and an association rule analysis method based on FP-growth algorithm is proposed. Finally, a group of historical 

remote sensing user demand transactions are calculated and analyzed with the proposed method, and its effectiveness 

is verified. The advantages of the proposed method are mainly reflected in the compression of remote sensing 

demand data by FP-tree, scanning the data set only twice by FP-growth algorithm, no need to generate candidate 

itemsets and no repeated frequent itemset generation. In addition, the directed term graph has the function of pre-

pruning for the construction of double-layer FP-tree, and such a tree features short search path and small search range. 

For a large number of remote sensing demand in the future, the proposed demand mining method may be an effective 

one to analyze remote sensing user demands and observation target characteristics, which can be used in the 

recommendation and management of remote sensing data services. 
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