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Abstract

As a torsion element, the analysis of mechanical characteristics of torsion springs is critical to clutch design. This
paper investigates the stress and deformation of torsion springs of spring-overrunning clutches by means of spatial
curved beam theory, which fully takes account for the geometric nonlinearity and the initial curvature of the spring.
The geometry of the spring before and after deformation is described by two Euler angles and three coordinate
systems. Load and displacement constraints of torsion springs under real clutch operating conditions are analyzed
and incorporated into the spring stress and deformation analysis. The numerical solution of this boundary value
problem is carried out by the multiple shooting method and proved to be accurate by comparison. Moreover, this
paper presents a method for calculating the torsional stiffness of springs, which can be applied to the analysis of
torsional springs with irregular dimensions.
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I. Introduction

The springoverrunning clutch is a mechanical device that can only transmit torque in one direction. It often used in
aircraft, automobile, agricultural machinery, which is a key component of transmission system. Spring overrunning
clutches have been widely used, but so far there has been little discussion about the stress and deformation of
torsional springs in clutch engagement, and there are no accurate modeling and calculation methods available. In
the open literature, only Lynwander, etc.(1) has calibrated the spring using the mechanical equations of an ordinary
beam in the design of aviation spring overrunning clutch. In aviation, performance requirements for clutches are
much higher, so there is a higher demand on clutch design, and it is necessary to further clarify the stress and
deformation of springs under clutch operating conditions.

Figure 1 briefly illustrates the working principle of an overrunning clutch using a torsion spring. The spring
expands radiallyto frictionally engage the input and output drum, transmitting torque from the inputto the output
when the input member speed exceedsthe output member in a direction counter to the pitch of the spring coils.
Otherwise, the coil spring contracts radially and disengages from the drum, allowing the output member to freely
rotate. Figure 2 shows a cross-sectional view of the clutch. As a result of the interference fit, the teaser coils are
always in contact with the cylindrical inner surface of the drum at both ends. As the clutch is not loaded, the rest of
the coils havea uniform gap with the inner surface. When the input begins to transmit torque, the input drumgrips
the teaser coilstwists and unwinds the entire coil spring, thereby causing the subsequent coil spring to unwind and
expand outwardly against the cylindrical inner surfaces of the input and output clutch members.

Studies of the static properties of helical springs focus on natural frequencies and vibrations (Yildirim(2),
Mottershead(3),XiongandTabarrok(4), Lee and Thompson(5)), stress-strain problems (Jiang and Henshell(6),
Dammak(7), Taktak(8)), and are mainly conducted using finite element methods and transfer matrix methods.
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However, the springs studied in these articles are only loaded with simple loads and simple boundary conditions.
And little attention has been paid to the deformation of springs in the existing literature. Most of the literature
considers springs with small deformations as the object of study, so the geometric nonlinearity exhibited by springs
in large deformations is not fully considered.

Fig. 1: Working principal diagram of spring overrunning clutch

Fig.2: Cross-sectionalview of spring overrunning clutch

Since the springcoil has a much larger scalefor the length dimension than the other two dimensions, it is considered
as aninitially curved and twisted beam. The displacement of an arbitrary cross section of a spatially curved beam in
one direction is not only related by the strain in this direction, but also by the displacement of the rigid body in the
other two directions and by the initial curvature. The spring is the torque transfer element of the overrunning clutch
and is subjected to continuous and varying non-uniform loads distributed along the beam's length. During the
operation of the expansion type spring clutch, the spring is continuously constrained by the drums in the
cylinderdiameter direction. In analyzing the stress and deformation of springs, these complex loads and
displacement constraints present challenges.

To derive the equations of motion of naturally curved and twisted beamconsidering geometric nonlinearities, it is
common to use two or three successive Euler-like rotations to obtain the transformation matrix between the
deformed and undeformed states(9-13).Houbolt and Brooks(14) derive the linear partial differential equation for
the coupled bending and torsion of twisted nonuniform blades. Hodges and Dowell(15)develop a nonlinear theory
to discuss the strain-displacement relations for long, slender beams. They derive the equations of motion for a
rotating beam benefiting from Peter(16)’s contributions to transformation laws and strain-displacement relations.
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However, coordinate transformations using three Euler angles result in asymmetric equations of motion, and the
torsion-related angle does not represent the real twist angle even if only two Euler angles are used in the
transformation. To solve this problem, Pai and Nayfeh(13) introduce the concept of virtual local rotationto derive
fully nonlinear equations governing the motions along three perpendicular directions. Pai and Anderson(17)
demonstrated the accuracy of the results of the spatial beam theory by experiments using flexible beams as objects.

Since the spring is continuously constrained by the drumin a certain direction, this is a complex super-stationary
structural problem, and although the constraint is known, it cannot be solve00000d directly by Force Method due
to the geometric nonlinearity of the spatial beam. This paper introducesthe nonlinear beam theory that fully
accounts for initial curvatures and geometric nonlinearities to analyzes the stress and deformation of the helical
spring in the clutch. The non-uniform load distribution caused by the drums on the helical spring during clutch
engagement are also considered in this analysis.

II. Geometric modeling of spatial curved beam

The vector Rdenotes the position of reference point on the neutral axis of an undeformed spatial curved beam. The
abc coordinates represent a fixed global reference frame for indicating the position of each point in space. The
xyzcoordinatesis a local coordinate system describing the undeformed beam, whose x-axis is always tangent to the
beam’s neutral axis. The ξηζ coordinatesis a local coordinate system used to describe the deformed beam, with
theξ-axis representing the deformed neutral axis, and η and ζ axis representingthe deformed y-axis and z-axis,
respectively.

Fig. 3: Schematic diagram of deformation of a space beam with initial curvature

( ) ( ) ( )a b cA s B s C s= + +R i i i (1)

ia, ib, and ic denote the unit vectors of the abc coordinate system. s denotes the undeformed arc length along the x-
axis from the beam root to the observed reference point.

(1) The model of undeformed curve

x a
o

y b

z c

T
禳 禳
镲 镲镲 镲轾=睚 睚臌镲 镲
镲 镲铪 铪

i i
i i
i i

(2)

The xyzcoordinate system consists of three-unit vectors, ix, iy, and iz.[To] is a transformation matrix that relates the
coordinate system abc and xyz. Eq.can be obtained from the properties of the curve.
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where( ) ( )d ds¢º ;θ21,θ22, θ23are the angles between the y-axis and a-axis, b-axis, and c-axis, respectively.

According to the orthogonality of vectors z x y= ´i i i ,

31 23 22cos cosoT B C ⅱ= - , 32 21 23cos cosoT C A ⅱ= - , 33 22 21cos cosoT A B ⅱ= -

Fig. 4: The geometric relation between the coordinate systems abc and xyz

The parametric equation of helicalline is
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The [To] of helical line can be obtained from Eq. and
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Using the Eq. and the orthonormality property
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where the initial curvature matrix [k] is given by

( )
[ ][ ] = [ ]

x o
o T

y x y z

z

d Tk T
ds

¢禳
镲镲¢= =睚
镲¢镲铪

i
i i i i
i

(7)

According to properties of orthogonal vector groups and the definition of torsion or curvature
3

2
1 3

1

o
y oi

z i
i

di dTk i T
ds ds=

鹤 =å (8)
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o
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where k1is the initial torsion of curve, k2and k3 are the initial curvature of the curve in the xzplane and xyplane,
respectively.

Then the initial torsion or curvature of helical linecan be obtained from eq and ~

1
cos sink

R
 

= , 2k  ¢= ,
2

3
cosk
R


= -

(2) The model of deformed curve

[T]is the coordinate transformation matrix from the xyz system to the ξηζ system.
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(11)

The ξηζ coordinate system consists of three-unit vectors, i1, i2, and i3. [T] is a transformation matrix that relates the
coordinate system ξηζ and xyz.

Two successive Euler angles α and φ are used to describe the rotation of the section from the undeformed position
to the deformed position.The Euler angles α is generated by bending, and φ is related to the torsional deformation.
Fig. 5 shows how the cross section is transformed from the xyz coordinate system to the ξηζ coordinate system by
two rotations of the Euler angles.

Here, u,v, wrepresent the displacement of the reference point with respect to the x, y and z-axes, respectively
Relate α to three displacements, which indicates the relationship between α and displacements.
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Fig. 5: Relationship between displacement of the neutral axis and the Euler angle

pq representsthe vector ofa section of undeformedbeam. At p, the displacement vector isD1, and at q, itis D2

1 x y zu v w= + +D i i i (12)
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ˆ ˆ,  p q are the deformed reference point of p, q Hence, the vector of pq is deformed into ˆ ˆpq
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(19)

where e is the axial strain along the neutral axis ( ˆ ˆpq ).

According to the relationship of the vector rotate, the elements of matrix [T], T2i, T3i, can be represented in term of
T11, T12, T13,ϕ.
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Differentiating eq with respect to s and using Eq. yield
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where �1 is the torsion of deformed curve, �2 and ρ3 are the curvature of deformed curve in the ξζ plane and ξη
plane, respectively.

it can obtain that
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Eq.~ describe the geometry of deformed beam by torsion and curvature.

(3) Variations of strain and curvatures

δθ1, δθ2, δθ3are virtual rotation angles with respect to the axes ξ, η, ζ, respectively. Variations of unit vectors ik
result from virtual rotations of the observed cross-section.
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The variation of curvature can be obtained by variational and integral calculations of curvatures
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III. Nonlinear equation of motion

The extended Hamilton principle, as well as the local engineering stresses and strains, and the new interpretation
and manipulation of orthogonal virtual rotations, are used to obtain six fully nonlinear equations of motion(13).The
governing partial differential equations can be derived to be
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Fig.6: Differential beam element subjected to stress resultants and moments

Fig.6 illustratesa differential beam element subjected to stress resultants and moments.Fi; are the stress resultants,
and Mi, are the stress moments. F2 and F3are transverse shear resultants, which can be represented in terms of stress
moments and their derivatives by using Eq. q1, q2 and q3 are distributed external forces acting along axes x, y and z,
respectively, and q4, q5 and q6 are distributed external moments acting along axes ξ, η, and ζ, respectively.

1 11A
F dydz=ò (37)

( )1 13 12A
M y z dydz = -ò (38)

2 11A
M z dydz=ò (39)

3 11A
M y dydz= -ò (40)

where A denotes the cross-section area, σij are Jaumann stress.
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where εij are Jaumann strains, E is Young’s modulus, G is shear modulus and σ22=σ33=σ23=0 is assumed. The strain-
displacement relations are
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11 2 3e z y  = + - (42)

12 1z = - (43)

13 1y = (44)

where i i ik = -

Substituting Equations~ into Eq., it can be obtained that
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1 1

2 2 2
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(45)

where 3 3
2 3 2 3

1 1,  ,  
12 12 pI hb I bh I I I汉 = + .b represents the dimension of the cross-section (yz-plane)in the

z-axis direction, and h is the dimension in the y-axis direction.

IV. Load and boundary condition analysis

(1) Analysis of loads

Take any element of the spring coil for force analysis as shown in Fig.7. The spring element is subjected to
pressure and friction from the drum. The center Angle of the element spring is d�, df and dN are respectively the
friction and pressure from the drum to the element of spring. P is the equivalent concentrated force produced by
moment of couple T on the element. dP and dT present the increments of the force and moment, respectively.

Fig. 7: Force diagram of spring element



CONVERTER MAGAZINE
Volume 2021, No. 7

ISSN: 0010-8189
© CONVERTER 2021
www.converter-magazine.info

979

According to the moment and force balance of element, the following two equations (2.5, 2.6) are established.

sin ( )sin
2 2
d ddN P P dP 

= + + (46)

T Rdf T dT+ = + (47)

Since the center angle of the element is very small, it can be taken sin d d » and sin 0
2
ddP 

» . From the

definition of moment and friction force, equations (2.7) and (2.8) can be obtained, respectively.

TP
R

= (48)

df udN= (49)

Through the equation (2.5) and (2.7), equation (2.9) can be obtained.

TdN d
R

= (50)

Combined the equation (2.6), (2.8) and (2.9), the differential equation (2.10) can be gotten. There is an initial
energizing moment due to the interference fit of energizing coils, that is, T=T0 when θ =0 .By integrating the
differential equation (2.10),the equation (2.11) can be obtained.

00

T

T

dTd
T



  =蝌 (51)

0T T e= (52)

The equation , which shows the relationship between the torque transmitted by clutch and the pole Angle of the
spring in contact with the inner surface, shows that the torque increases exponentially with the polar Angle. μ
represents the coefficient of friction between the outer surface of the spring and the inner surface of the drum.

It can be derived from equations and that applied pressure and friction are both exponentially distributed loads,
and their load concentration functions are as shown in equations and .

0
2N

T edNq
ds R



= = (53)

0
2f

T edfq
ds R


= = (54)

ds is arc length of element, ds= Rdφ.
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Thus, combining the spring geometry gives

0 0 0
1 2 32 2 2cos , , sinT e T e T eq q q

R R R

   
 = = =

(2) Analysis of boundary conditions

Since the spring is a symmetric structure about the middle section (y-z plane), it is possible to calculate it
considering only one half of the structure to reduce the calculation volume. The arc length of the half of spring coil
is set to L, let the middle section s = L, the free end s = 0.

Based on structural symmetry and its own characteristics, two ends have the following boundary conditions:

1 3 1 2 3

11 12 13

at s=0: 0
at s=L: 1, 0,

F F M M M v
T T T u w v D 

= = = = = =

= = = = = = =
(55)

In addition, the boundary conditions of spring coils are ( ) (0 )v s D s L= < < .

V. Numerical solution and discussion

Expanding the equation yields

1 3 2 2 3 11 1 12 2 13 3F F F T q T q T q ¢= - - - - (56)

2 1 3 3 1 21 1 22 2 23 3F F F T q T q T q ¢= - - - - (57)

3 2 1 1 2 31 1 32 2 33 3F F F T q T q T q ¢= - - - - (58)

1 3 2 2 3 4M M M q ¢= - - (59)

2 1 3 2 1 3 5(1 )M M M e F q ¢= - + + - (60)

3 2 1 1 2 2 6(1 )M M M e F q ¢= - - + - (61)

It follows by the Eq. that

11 3 21 2 31 12 3 13 2T T T T k T k ¢ = - + - (62)

12 3 22 2 32 13 1 11 3T T T T k T k ¢ = - + - (63)

13 3 23 2 33 11 2 12 1T T T T k T k ¢ = - + - (64)

Substituting Eq. into Eq. yields
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13
1 11 1 12 2 13 3 3 22 2 32 13 1 11 3

11

12
3 23 2 33 11 2 12 1

11
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1

( )
1

TT k T k T k T T T k T k
T

T T T T k T k
T

   

 

¢= - - - - - + -
+

+ - + -
+

(65)

It can obtained from Eq.~ that

3 2 111 (1 )u vk wk e T¢= - + - + + (66)

1 3 12(1 )v wk uk e T¢= - + + (67)

2 1 13(1 )w uk vk e T¢= - + + (68)

F1, F2, F3, M1, M2, M3, T11, T12, T13, ϕ, u,v, ware used as 13 independent variables, and the 13 first-order ordinary
differential equations ~are solved numerically using the multiple shooting method.

Table 1: Physical Properties of Torsion Springs Used in Clutch

Parameter(unit) Value
E (GPa) 2.11e2

ν 0.32
b (mm) 10
h (mm) 8
∆D (mm) 0.1
R (mm) 23
N 17.5

� (degree) 5
� 0.1

� is the Poisson's ratio. N means half number of coils of the spring, so the maximum value of θ(Polar Angle) in
equation is 2Nπ.

The following results are calculated from a load loading with a torque of 1200 N·m (i.e.T0 = 0.02N·m). Fig.8(a)
to(f) show the distribution of the stress resultants and moments of the spring on the length scale (0 to L), where the
horizontal coordinates are represented by the polar angle (θ = s/R) .Fig.11 shows the displacements in the x-axial
and z-axial directions, i.e., u and w, generated on each element, respectively.
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(a)F1

(b)F2
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(c)F3

(d)M1

(e)M2
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(f)M3

Fig. 8: Distribution of stressresultants and moments in each direction

Fig.9: The static displacement of each element

F2 and F3 increase in an exponential manner with the pole angle. Where F1 has the largest value, exceeding 51 KN
in the middle section. Although there is a constant displacement boundary constraint in the y-direction, the F2 and
M3 in the direction associated with it still vary to varying degrees. Stress resultants and moments and curvature
increments have the highest values near the middle section of the spring, so the deformation is the greatest there. In
the x and z directions, there are no significant differences in the displacements produced by the elements at
different positions of the spring.

The torsion process of the overrunning clutch was simulated using ABAQUS finite element software, and the
values of F1 at each section were extracted from the results and compared with the numerical solution. From the
comparison, the difference between the numerical solution and the results of the finite element software is very
small as seen in Fig.10, which can prove the accuracy of the method.
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Fig.10: Comparison of numerical results with ABAQUS results

The calculated deformation of each section of the spring coil is used to calculate the torsional deformation of the
entire spring using geometric relationships, which further allows the torsional stiffness of the spring to be found.

VI. Calculation of spring torsional stiffness

Fig.11: Comparison of numerical results with ABAQUS results

sin cosh u w   = - (69)

∆u and ∆ware the displacements of the spring wire in the x-axis and z-axis directions of the local coordinate system,
respectively. ∆h is the displacement of the spring coil in the direction of the c-axis of the global coordinate system
(abc).The expression for the geometric relationship before and after the deformation of a section of spring coil is
represented by equations ~.

h h h= + (70)

l l e= + (71)
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R R v= + (72)

sin harc
l


骣
琪= 琪
桫

(73)

As shown in the Fig.12, l and l are the lengths of a section of spring coil before and after deformation respectively.
ψ and  are the helix lift angles of a section of spring coil before and after deformation respectively. R and R are
the cylindrical radius of a section of the spring before and after deformation respectively. ∆v is the displacement of
the spring coil in the direction of the y-axis of the local coordinate system. The geometric relationship described in
Fig. 12 shows that the value of the change in polar angle produced before and after the deformation of a section of
spring coil is

cos cosl l
R R
  = - (74)

The torsion angleϕof the entire spring is therefore the sum of the changes in the polar angles ∆�of the individual
sections of the spring coil.

1

Ne

m
m

 
=

=å (75)

The torsional stiffness of a spring can be obtained from the definition by the following equation

2
e

t
Tk





= (76)

Te=596N·m and 894N·m are input into the system of equations for solution, and the torsion angles φ are 1.9321 rad
and 1.7719 rad respectively, so the torsional stiffness kt can be calculated as 1.8605e3 N·m/rad according to the
equation.

VII. Conclusion

It is necessary to determine the spring's static characteristics under realistic operating conditions in order to provide
theoretical basis for clutch design. To estimate the stress and deformation of the spring under realistic operating
conditions, the geometric nonlinearity of the spring is fully considered in this paper, and realistic load and
displacement constraints are applied to the torsion spring in the clutch. The paper uses a two-node curved beam
element to model the spring geometries accurately. Three coordinate systems are established to represent the
geometry of the undeformed and deformed spring, and then uses variational methods to determine virtual
displacement and deformation of the element. In the end, the problem is converted into 13 nonlinear ordinary
differential equations by applying spatial curved beam theory. Multiple shooting method is used to solve this
boundary value problem, and validity and accuracy of the results are proven. The paper addresses the problem that
the deformation of springs subjected to complex loads cannot be calculated and proposes a torsional stiffness
calculation for springs that can be applied to cylindrical springs of various parameters.
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