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Abstract 

 

In this paper, a fault diagnosis method combining the variational mode decomposition (VMD) with 

adaptive parameters and multi-point optimal minimum entropy deconvolution adjusted (MOMEDA) 

optimized by partial swarm optimization algorithm (PSO) aiming at the problem that the fault information 

is hard to extract from the overwhelmed vibration signal when the rotor system works in strong noise 

setting is proposed. Firstly, the original signal is decomposed into intrinsic mode components (IMF) series 

by VMD, from which the specified IMF components are selected for signal reconstruction according to 

the correlation coefficient – kurtosis criterion, and then the reconstructed signal is processed with the 

MOMEDA model for the filtering. Finally, the rotor system fault type is identified through the signal 

envelope spectrum analysis. Simulation test and rotor fault experiments results show that the improved 

VMD model with PSO-MOMEDA method can primely remove the noise from the vibration signal of the 

rotor system and accomplish the fault mode recognition with avoiding the blind selection of parameters 

in the process. 
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I. Introduction 

 

With the continuous development of industrialization, rotating machinery has been widely used, accounting for about 

80% of the total amount of mechanical equipment. The core components, rotor and support system, generally play 

the important role of bearing and transferring load, and their running status directly affects the performance of the 

whole equipment. According to statistics, about 60% of the rotating machinery failure are caused by the rotor system 

failure. However, the regular disassembly and inspection will not only cause human resources wastes, but also 

renders damage to the parts in the rotor system, and delay the normal production activities in the actual industrial 

production. Therefore, it is particularly vital to ensure the safe and reliable operation of rotating machinery by 

collecting and analyzing the vibration signals of the rotor system in real time. At present, extracting the impact 

components from the signal and analyzing the spectrum is the most commonly used analysis method to figure out 

the feature frequency of the fault so as to determine the type of fault [1,2]. As the outward transmission process of 

impact signal can be seen as a linear convolution process of shock signal and transmission channel, and the extraction 

of shock components from the original signal can be treated as deconvolution [3]. MOMEDA is a novel 

deconvolution method proposed by Mcdonald et al. [4], which overcomes the disadvantages that the minimum 

entropy deconvolution (MED) cannot reflect the true situation of faults and maximum correlated kurtosis 

deconvolution (MCKD) parameters selection is difficult [5,6]. However, due to the large amount of noise mixed in 

the original vibration signal, the fault characteristic frequency spectrum in its envelope spectrum is not obvious if 

the signal is deconvoluted directly by MOMEDA, therefore it is usually preprocessed with noise reduction first. 

Empirical mode decomposition (EMD), local mean decomposition (LMD), wavelet transform threshold denoising 

and other methods [7-10] are all methods for processing nonlinear and non-stationary signals. In recent research, 

scholars have executed on the difference among EMD and LMD, both of which could decompose the original signal 
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into the sum of multiple components, but there are serious problems such as modal aliasing and endpoint effect 

[11,12]. Wavelet transform threshold denoising is a commonly used noise reduction algorithm in practical 

engineering, which achieves denoising by selecting an appropriate threshold function while preserving as many 

features of the original signal as possible [13]. Since there are many parameters in the threshold function that affect 

the denoising performance, reasonable selection of parameters is required. VMD is used to decompose the signal by 

introducing variational constraint, which surmounts the issues of modal aliasing and endpoint effect, and requires 

few parameters to be set, thus it is extensively applied for noise suppression of vibration signals [14]. 

 

This paper proposes a method that combined improved VMD with PSO-MOMEDA based on the problem that the 

faulty characteristics of the rotor system vibration signals are not easily extracted in the strong noise background. 

Since the kurtosis (Ku) can represent the degree of shock in the signal and the relative entropy (KL) [15-17] can 

represent the degree of irregularity of the system and the degree of similarity of two probability distributions, this 

paper proposes a new integrated index Z (Z=Ku/KL) based on two indicators, kurtosis and relative entropy, to obtain 

the maximum Z and thus determine the optimal parameters K, α and L in the method. 

 

This article is organized as follows, theoretical background of VMD and MOMEDA, the process of parameter 

optimization and the steps based on VMD with adaptive parameters and PSO-MOMEDA are discussed in Section 2. 

A fault simulation signal of bearing inner ring is established in Section 3, and the fault feature frequency is obtained 

by using the proposed method and its type is identified. Experimental verification is carried out in Section 4, where 

the validity of the proposed method is certificated by processing the single and couple signals that measured in the 

experiment. Finally, the conclusions are drawn in Section 5. 

 

II. Principle and methods  

 

2.1 VMD 

 

VMD is an adaptive decomposition method that searches the optimal variational model through multiple iterations, 

where the original vibration signal  x t  to be analyzed is composed of several IMF components, each of which 

can be regarded as an AM-FM signal:  

 

          
      cosk k ku t A t t   (1) 

 

where  kA t  is the instantaneous amplitude of  ku t ,  k t  is the phase of  ku t . 

 

According to the minimum sum of the frequency band width of each component, the constraint condition is that the 

result of the addition of each component is the original signal, the constraint equation of the variational mode 

decomposition is: 
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where  ku  is the modal components of the decomposed original signal,      /k kw d t dt is the central 

frequency corresponding to each IMF components, t  is the partial derivative of t,  t  is the delta function. 

In order to fetch the optimal solution of Eq. (2), the penalty factor α and the Lagrange multiplier λ are introduced to 

make the solution model become unconstrained model: 

 



CONVERTER MAGAZINE 

Volume 2021, No. 8 

ISSN: 0010-8189 

© CONVERTER 2021 

www.converter-magazine.info 

392 

 

                 

    

    

   

         

2

1 2

2

1 12

, ,

,

k

k k

K
jw t

t k

k

K K

k k

k k

L u w

j
t u t e

t

x t u t t x t u t



 








 



  
    
  

   



 

 (3)
 

 

where  t is the Lagrange multiplier,  is the quadratic factor, is the inner product. 

 

The specific algorithm steps are as follows: 

 

Step 1: Initialization 1ˆ
ku , 1

kw ,
1̂ ,n0;  

 

Step 2: nn+1, and updated ˆ
ku , kw according to Eq. (3): 
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Step 3: Update : 
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Repeat steps 2 and 3 until satisfied
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components are output. 

 

 

2.2 MOMEDA 

 

The fault vibration signal is assumed to be: 

 

                                   m e n s    (6) 

where m  is the measured signal, n is the system impact signal, e  is the transfer function of the system, and s  

is stochastic noise. 

The main principle of the MOMEDA algorithm is to identify the inverse fold product for a multi-pulse target whose 

position is known, and to find a filter that maximizes the return of m  to n , i.e. 
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where 1,2, ,p N L  . 

 

The objective function is described as: 

 

              , max
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  (8) 

where q is the objective vector that defines the position and weight of the deconvolution target impact component. 

Deconvolution works best when q fits perfectly with n, and the corresponding filter is the best filter f. 

 

The solution of Eq. (8) is equivalent to solving Eq. (9): 
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Let 0 1 2[ , , , ]pX M M M ,simplify the Eq. (10) to
1 3

0 0 0Tn X q n q nX n
 

  ,and substitute 

0

Tn X f to obtain: 
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  (11) 

 

The impact signal n can be recovered by substituting Eq. (11) to 0

Tn X f . 

 

2.3 Parameter optimization and diagnosis process 

 

This paper proposes a rotor system fault diagnosis method combining adaptive parameters VMD and PSO-

MOMEDA, in which VMD involves the number of decomposition layers K and penalty factor α, and MOMEDA 

involves the filter length L. To avoid the subjectivity of artificial selection, the parameters in the algorithm are 

optimally selected with Z as the target function, and it is the best value when Z is maximum. The particle swarm size 

is set as 25, the learning factor c1=c2=2, the inertia weight w1=0.95, w2=0.4, the number of iterations is 50, and the 

range of L for the optimization search is [100,2000] in the particle swarm algorithm, Fig.1 shows the process, and 

the specific steps are as follows: 



CONVERTER MAGAZINE 

Volume 2021, No. 8 

ISSN: 0010-8189 

© CONVERTER 2021 

www.converter-magazine.info 

394 

 

 

Step 1: The original signal is decomposed by VMD, and reconstructed by selecting the corresponding modal 

components in the light of the correlation coefficient(ρ)-kurtosis (ku) criterion. 

 

Step 2: The reconstructed signal is processed with the MOMEDA model for filtering to obtain an enhanced signal 

and make envelope spectral of this signal to analyze. 

 

Step 3: The characteristic frequency of the fault is compared with the envelope spectrogram of the enhanced signal 

to discern the fault type. 

 

As the study processing, two main steps are included, i.e., the simulation analysis for the primarily validation of the 

adaptive VMD method and the further verification of the proposed entire VMD and PSO-MOMEDA model. 

 

 
 

Fig 1: Parameter optimization and diagnosis flow chart 

 

III. Simulation analysis 

 

3.1 Simulation signal construction 

 

A mathematical model of the vibration signal when the inner ring of rolling bearing fails in the rotor system is 

constructed in order to prove the effectiveness of this method [18]: 
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where ( )x t  is the cyclic impact component, displacement constant 0A  is 0.5, resonance frequency nf  is 4kHz, 

rotation frequency rf  is 20Hz, attenuation coefficient C is 500, inner circle fault characteristic frequency if  

=1/T=100Hz, ( )n t  is the Gaussian white noise component, sampling frequency sf  is 12kHz, and the number of 

sampling points is 5000. 

 

In order to simulate the fault signal in real environment, Gaussian white noise of -10dB is added to the simulation 

signal of rolling bearing inner ring fault, Fig. 2 depicts the simulation signal after adding noise. From the figure that 

we can see the time domain waveform is complex, the shock is not obvious, and only the fundamental frequency of 

the fault can be noticed in the envelope spectrum, and there are more components of other interference frequencies. 

 

 
 

(a) Time domain graph 

 
 

(b) Envelope spectrum 

Fig 2: Time-frequency spectrograph of simulation signal 

 

3.2 Simulation signal processing 

 

According to the above method to determine K=3 and α=350, the three IMF components after decomposition are 

shown in Fig.3. The kurtosis and correlation coefficients of each component are calculated as shown in Fig.4. 
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(a) Time domain graph 

 
 

(b) Spectral graph 

Fig 3: Results of VMD 



CONVERTER MAGAZINE 

Volume 2021, No. 8 

ISSN: 0010-8189 

© CONVERTER 2021 

www.converter-magazine.info 

397 

 

 
 

Fig 4: Component index chart 

 

The correlation coefficient between IMF3 and the original signal is greater than the mean value and its kurtosis value 

is greater than 3 that can be perceived from Fig.4, which retains the most impact features in the original signal. From 

Fig.3b, it can be found out that each component is relatively independent and has not been hyper-decomposed, IMF3 

well retains the components of medium-high frequency and reduced the interference of low frequency components, 

and can be seen from Fig. 5 that its temporal waveform shock is more obvious. 

 
 

Fig 5: Comparison between reconstructed signal and original signal 

 

 
 

Fig 6: Curve of Z with the number of iterations 

 

There are 50 iterations in total. It can be seen from Fig.6 that Z reach the maximum value and the filter order L is 

1918 when the iterations reach the 20th time. MOMEDA deconvolution of IMF3 (L=1918, window function is 

[1918,1], period T is 120) is performed to obtain the temporal waveform, and the envelope spectrum analysis is 
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performed shown in Fig.7. The characteristic frequency and the frequency doublings are displayed in the Fig.7b, 

which indicates that the bearing inner ring of the rotor system has out of order and proving the significance of the 

method proposed in this paper. 

 

 
 

(a) Time domain graph 

 
 

(b) Envelope spectrum 

Fig 7: Temporal waveform and envelope spectrum of MOMEDA deconvolution reconstruction signal 

 

Ⅳ. Experimental validation 

 

To verify that the method is also useful on the actual measured rotor system signals, a rotor system fault simulation 

test bench was built to analyze the single fault of the outer ring and the composite fault of the outer ring and rotor 

imbalance, the test bench is shown in Fig. 8, and the data acquisition process is shown in Fig. 9. 
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Fig 8: Test bench 

 

 
 

Fig 9: Data gathering process 

 

The type of rolling bearing we used is MB ER-12K, and the fault is set in its outer ring, and the rotor unbalance fault 

is set by increasing the mass on the counterweight pan, and the sampling frequency is set as 12800Hz, the number 

of sampling points is 8000, and the shaft speed is 1200r/min in this experiment. The geometric parameters of the 

rolling bearing size are shown in Tab.1. The rotor unbalance fault characteristic frequency is 20Hz, and the inner 

ring fault characteristic frequency of the rolling bearing is calculated as 61.27Hz according to the rolling bearing 

fault characteristic frequency calculation formula [19]. 

 

TABLE I. Geometric parameters of rolling bearing 

Geometric parameters values 

Number of rolling bodies 8 

Rotational frequency 20Hz 

Rolling body diameter 7.9375mm 

Raceway section diameter 33.4772mm 
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Contact angle 9.08° 

 

4.1 Outer ring fault 

 

 
 

(a) Time domain graph 

 

 
 

(b) Envelope spectrum 

Fig 10: Time-frequency spectrograph of bearing outer ring fault 

 

The time domain diagram and envelope spectrum of the vibration signal of rolling bearing outer ring fault measured 

in the experiment are shown in Fig.10, from which it can be seen that the temporal waveform is interfered, and the 

envelope spectrum contains disturbing components, which could not be beneficial for the fault mode determination. 

The acquired vibration signal is decomposed by adaptive VMD method, where K=6, α=1850, and the six IMF 

components after decomposition are shown in Fig.11. The results of calculating the kurtosis of the six IMF 

components and the correlation coefficient between them and the original signal are shown in Fig.12. 
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(b) Time domain graph 
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(b) Spectral graph 

Fig 11: Results of VMD 

 
 

Fig 12: Component index chart 

 

It could be observed from Fig. 11(b) that there is no hyper-decomposition phenomenon, According to Fig. 12, IMF2, 

IMF3 and IMF5 are selected for signal reconstruction. The reconstructed signal and the original signal is shown in 

Fig.13. 
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Fig 13: Comparison between reconstructed signal and original signal 

 

 
 

Fig 14: Curve of Z with the number of iterations 

 

It can be seen from Fig.14 that when the iterations reach the 2th time, Z reach the maximum value and the filter order 

L was 1746. The reconstructed signal was deconvoluted by MOMEDA (L=1746, window function is [1746,1], period 

T is 208.91) to obtain the temporal waveform, and the envelope spectrum analysis was performed shown in Fig.15. 

 

 
 

(a)Time domain graph 
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(b) Envelope spectrum 

Fig 15: Temporal waveform and envelope spectrum of MOMEDA deconvolution reconstruction signal 

 

From the envelope spectrum analysis, the characteristic frequency of bearing outer ring fault and their multiples 

could be obtained, which is consistent with the experimental fault type. 

 

4.2 The composite fault of the outer ring and rotor imbalance 

 

 
 

(a)Time domain graph 

 

 
 

(b) Envelope spectrum 

Fig 16: Time-frequency spectrograph of outer ring-rotor imbalance fault 

 

As for the compound fault mode, the outer ring of rotor system and rotor imbalance are set in the experimental bench. 

Fig. 16 illustrates the time domain waveform diagram and envelope spectrum of the composite fault. The signal is 

decomposed primarily with VMD method (K=2, α=100), and Fig. 17 shows two IMF components after 

decomposition. The calculated kurtosis of these two IMF components and the correlation coefficient between them, 

together with the original signal are shown in Fig.18. 
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(a)Time domain graph 

 

 
 

(b) Spectral graph 

Fig 17: Results of VMD 

 
 

Fig 18: Component index chart 
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Fig 19: Curve of Z with the number of iterations (outer ring) 

 

It can be seen from Fig. 18 and Fig.19 that IMF2 is selected for MOMEDA deconvolution with L=2000 when the 

period T is 208.91, and the window function is [2000, 1], and the temporal waveform shown in fig. 20 is obtained 

and analyzed by envelope. 

 
 

(a)Time domain graph 

 

 
 

(b) Envelope spectrum 

Fig 20: Temporal waveform and envelope spectrum of outer ring fault 
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Fig 21: Curve of Z with the number of iterations (rotor imbalance) 

 

When the period T is 640, L=1607 that we can see from Fig.21, and the window function is [1607,1], the time domain 

waveform is acquired, and the envelope analysis is processed as shown in Fig. 22. 

 
 

(a)Time domain graph 

 

 
 

(b) Envelope spectrum 

Fig 22: Temporal waveform and envelope spectrum of rotor imbalance fault 

 

After the original signal is handled by filtering, deconvolution and envelope the signal by setting different fault 

periods T and filter length L. From Fig. 20(b) and 22(b), the typical fault characteristic frequency and related 

multiples could be vividly achieved for the corresponding fault type identification. 
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Ⅴ. Conclusion 

 

This paper proposes a fault identification method that basing on VMD with adaptive parameters and PSO-MOMEDA 

for resolve the difficulty of extracting fault characteristic frequency of rotor system under strong noise background. 

Through the combination of numerical simulation and experimental analysis, and the specific conclusions are as 

follows: 

 

(1) For the problem that the fault characteristics are hardly to be extract due to noise contamination in the rotor 

system vibration signal acquisition process, the method of combining adaptive VMD and PSO-MOMEDA is 

proposed. 

 

(2) For the parameter selection in the algorithm proposed in this paper, it is raised to take the indicator Z 

(Z=kurtosis/relative entropy) as the objective function to select the optimal value, which avoids manual intervention. 

 

(3) The method is put forward in this paper can not only apply on a single fault in the rotor system, but also performed 

well in the diagnosis of compound faults for the rotor system. 
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