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Abstract 

 
For imagesteganalysis, many studies have showed that the superiority of the convolutional neural network 

overconventional methods based on artificially designed features. Withthe trend of the fusion of traditional 

steganalysis methodsand some tricks used in classic computer vision tasks, such asSRNet equipped with residual 

modules and ZhuNet which usedspatial pyramid pooling, more and more CNN architecturesused for steganalysis 

are proposed. However, there still are somecharacteristics in most content-adaptive steganographic algorithms 

such as S-UNIWARD, HUGO, WOW, and tricks in designing network structure whichcan be used for steganalysis. 

Here, we propose a CNN network framework which can further improve theperformance of spatial 

imagesteganographic algorithms. First, we utilizemore SRM kernels to initialize the pre-processing layer than 

previous CNNs, and usean image padding method different from traditional modelsto preserve the integrity of 

image residuals as much as possible. Next, we use multiple channel attention layers which aim to discriminate the 

more informational features boosting the detection accuracy of network. Then, we deploy the spatial pyramid 

poolinglayer before features are fed into the fully-connected layers, aiming to extract more features from the last 

feature mapsin several scales. Several experiments under different steganographic algorithms show that, the 

proposed CNN outperforms the other CNN-based steganalyzerssuch as YeNet, XuNet, YedroudjNet,SRNet and 

ZhuNet. 
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I. Introduction 

 

Since the emergence of stegnography and steganalysis, theyhave been developingin competition with each other. 

Image steganography is away of hiding secretinformation in different domains of an image by slightly making 

some unnoticeable modification (changing pixel values of image in the spatial domain, and DCT coefficients in the 

frequency domain).In the past several years,with the advent of multimedias, more and more types of information 

were used in communication,steganographic algorithms keep developing, from simplest LSB embedding[1,2]to 

content-adaptive algorithms. Nowadays, those steganographicapproachesequipped with content-adaptive 

algorithms are more secure, which tend to conceal data in some highly textured regions, aiming to decrease the 

valuesof the specific pre-defined additional distortion function. Such asWOW[3], S-UNIWARD[4],HUGO[5], and 

the other methods[6] in spatial domain. In contrast, significant progress has also been made inthe field of image 

steganalysis, whose propose is to detect the existence of hidden information in images. Before the advent of 

machine learning techniques, the most powerfulanalyzer of steganographic algorithmswaspixel statistical methods, 

whichtook advantage of some defects in traditional steganographic algorithms, including RS analysis[7], chi-

Square test. Later on, due to the development of machine leanring, several novel steganalysis tools based on the 

content of images are proposed[8,9].The most famous steganalyzer based on ML classifiers inspatial domain isthe 

Spatial Rich Model[9]includingits multiple improved variants[10-12], which are regarded as themilestone of the 

modern steganalysis. Most of these steganalyzersare formed by assembling several submodels constructedby 

different high-pass filters into a rich bigger model. However, the performace of the conventional steganalyzers 

with hand-crafted faeturesrelys heavily on the effect of featureengineering, in other word, getting more complete 

information of image, the model will get better performance. Incontrast, due to limitation of memory and 

computationalpower, it is impossible to use traditional machine learningmodels directly with a huge amount of 
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features which maylead to overfitting or the curse of the dimension. 

 

Benefiting from the development of deep learning, thereare several models of steganalysis using CNN[13-17]. In 

the traditional computervision tasks, which include image segmentation[18-20],image classification[20,21] and 

object detection[22],CNN has been proved that it can efficiently extract thefeatures of images and get better 

performance, comparedwith conventional methods. Unlike fixed hand-craftedfilters used in traditional steganalysis 

detectors[9], thesefilters used in different layers of CNN can be optimized automaticallyby back propagation. 

Therefore, Diverse CNNarchitectures of steganalysis using different ways to improve the detection accuracy are 

proposed, such as high-pass KV filter[13,14] which is one of the filters in SRM [9], theabsolute value layer(ABS 

layer)[14], more SRM kernels[15,17], integrating some modules of classical networkarchitectures(such as 

ResNet[23], InceptionNet[24-26]). 

 

Here, we propose a new network architecture implementedby a convolutional neural network (CNN) named 

NieNet for steganalysis to capture more comprehensive and discriminative featuresof images. There are 

multiplenovel characteristics compared with other CNN-basedimage steganalyzers, which are detailed as follows: 

 

(1) In the pre-processing layer, we use 46different filters of SRM(linear and non-linear kernels) toinitialize the 

kernels to extract the residual of images andmodify the shape of some convolution kernels which are3rd spam 

kernels mentioned in [15,17]. Additionally,before convoluting the input images, the images will bemirror-

padded to impove the robustness of our model andto achieve better accuracy. 

(2) We deploy a new network module that combinesessences of two advanced CNN frameworks, ResNetand 

InceptionNet. This type of network architecture can beused for extracting image features from different 

perspectives, meanwhile avoid the problem of gradient vanishing. 

(3) The success of the attention mechanismin several computer vision tasks demonstrates that attention is 

important for neural network, we add the channelattention layer to each Res-Inception module similar to[27]. 

With the help of this layer, the weights of differenttypes of SRM kernels will be assigned dynamically 

toincrease the stability of our CNN. 

 

On two datasets (BOSSBase[34] and BOWS2[35]), several experiments are conducted, in which we train multiple 

CNN-based steganalyzers including ours under the same settings and compare their detection performance. And 

experimental results show our proposed steganalyzer achieves state-of-the-art performance. 

 

II. Related Works 

 

Tan [28], uses a convolutional neural network equippedwith four convolutional layers for image steganalysis,plus 

well-designed initialization using one of the hand-crafted filters. According to characteristicsof Gaussian function, 

Qian[13] proposed that a CNNarchitecture of steganalysis with Gaussian activation function. But the accuracy of 

these models is still worsethan traditional models which consist of SRM kernelsand classic machine learning 

methods (Support VectorMachine, Fisher Linear Discriminator)[9]. Later, Xu[14]proved that the feasibility of 

batch normalization layerin CNN-based steganalyzer and introduced absolute value function into the network 

architecture. 

 

Inspired by previous approaches of image residual extraction, Sedighi[29] proposed a CNN structurewith 

initialized weights with SRM kernels and well-designed histogramlayers, which projected feature maps into 

histogrammaps. YeNet[15] proposed a CNN architecture with 30high-pass pre-defined filtersmentioned in SRM[9] 

for initializing weights of a pre-processing layer plus a truncated activation function (TLU). The Yedrouj-Net[30] 

achievesbetter performance than YeNet[15] by using multiplemethods of data augmentation. A deep network for 

image steganalysis equippedwith shortcut connections, SRNet, was proposed in [16]and significantly improve 

detection accuracy in both spatial domainplus JPEG domain. And it also proved that a model usingrandomly 

initialized kernels for the first pre-processing layer can also get good performancewith the deeper network 

structure. Zhu[17] deployed moreadvanced layers including grouped convolution layers andspatial pyramid 



CONVERTER MAGAZINE 

Volume 2021, No. 3 

 

ISSN: 0010-8189 

© CONVERTER 2020 

www.converter-magazine.info 

378 

 

pooling layers to a CNN structure, itachieves better accuracy of detection and also regardsimages of arbitrary size 

as input. Wang[31] combinedmultiple domains of images and proposed WangNet whosethe first layer is initialized 

with DCT coefficient and moreSRM kernels, their experiments showed that with theincrease of kernels initialized 

by SRM kernels, the modelcan achieve better accuracy. 

 

2.1Architecture 

 

The architecture of the proposed CNN in demonstrated in Fig 1.It consists of multiple stacked layers including one 

image pre-processing layer with SRM initilization, several feature extraction layers containing two differenttypes 

of Res-Inception layers with shortcut connection, a spatial pyramid pooling layermentioned inZhuNet, and there 

are two fully connected layersgenerating the probability of stego/cover. 

 

 
Fig 1: The architecture of our CNN 

 

There are two types of blocks named as „TypeA Inception‟ and „TypeB Inception‟ shown in Fig.3 to extractspatial 

correlation with different kernels which have multiple shapes and finally feed these feature maps into 

fullyconnected layer. Each type of basic blocksconsists of the following steps approximately: 

 

2.1.1 Convolutional Layer 

We utilizemultiple small convolution kernels (eg. 3*3) to achieve function of larger kernels instead of directly 

using large convolutionkernel, preventing too many parameters to slow the time of convergence. By theway, this 

model can effectively extract different featuremaps by using Inception layer, which contains severalparallel 

convolution layers with kernels of different size.Specifically, the big differentce between two types ofblocks is 

that, the maxpooling operation is used in theTypeA block which aims to simulate the function of non-linear kernels 

mentioned in[9], and the TypeB block is equipped with depth-wise convolution layers similar to [17]aiming to 

extract features efficiently. And there is a hyperparameter named „reduction‟ to be used for controlling thenumber 

of outputs‟ channels, according to our setting, thehyper-parameter is set to 2. 

 

2.1.2Batch NormalizationLayer 

As Xu[14] mentions, CNN-based steganalyzer can take advantage of superiority of batch normalization layer, the 

use of batch normalization allows us to set a larger learning rate, and neural networks can converge quickly 
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benefiting from the uniform distribution of features. 

 

2.1.3 Different Non-Linear Activation Function 

Exceptthe first preprocessing layer followed by a TLU function. For all other blocks in theproposed CNN 

architecture, we use ReLUas the activation function after Batch Normalization operation, it has been proven in 

many computer visiontasks to have excellent characteristics, including avoidinggradient vanishing and accelerating 

model convergence. 

 

2.1.4 Average Pooling Layer 

In order to decrease the dimension of feature maps, a CNN usually is equipped with several pooling layer for 

down-sampling feature maps. For most circumstance, it would be max pooling layer, for in the field of CNN-based 

steganalyzers, average pooling layer is widely chosen for down-sampling features, because of the ability of 

preserving weakly steganographic signal. Therefore, we choose the average pooling layer for the proposed CNN 

instead of max pooling layer. 

 

2.2 Diverse Kernels 

 

The hiding operation of steganographic algorithms can be regardedas generating designed noises and adding itinto 

the cover image. As mentionedin YeNet[15], ZhuNet[17], Yedoudj-Net[30], it is a greatidea to use SRM kernels‟ 

initialization for steganalysisbased on neural network to extract residual features.However, the common of these 

former models is that all ofthem use 30 high-pass spam filters of SRM and theirrotated counterparts, we deploy a 

set of high-pass filters toour CNN‟s preprocessing layer (30 high-pass filtersof SRM, similarly to YeNet[15], 

Yedroudj-Net[30] andZhuNet[17], plus 14 non-linear minmax filters). Therefore, our proposed CNN is able to 

extract more noise residualmaps from input image than other networks, which meansmore comprehensive 

information can be extracted by our CNN. 

 

2.2.1 Improved Kernels 

As some existingCNN-based steganalyzersdemonstrates, the filter of size 3 × 3, such as “SQUARE 3 × 3”, “EDGE 

3 × 3” and the remaining 13 filters of size 5 × 5 including “SQUARE5 × 5”,“EDGE5 × 5” and “SPAM 3rd” can 

efficiently extract discriminative features of image. Beside these SPAM kernels, we creatively add some non-linear 

kernels to the prepro-cessing layer to increase the number of noise residualmaps. In practice, it can be easily 

implemented by using cross-channel max and min operations. As the additional kernels of SRM[9], we choose the 

limited numbers of non-linear kernels whichinclude minmax2nd21, minmaxEDGE3 × 3 22v, minmaxEDGE5 × 5 

22v, and minmax3rd 22v. As shown in Fig.2, there are two types of values of different colors performingthe same 

operations just like linear kernels. 

 

 
Fig 2: Different non-linear kernels which we choose to use in preprocessing module 

 

2.2.2 Mirror-PaddingOperation 

Inmanytraditionalcomputer vision models which take the pixel values ofthe image as input, the zero padding 
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operation is mostcommonly used for the sake of simplicity. From theperspective of steganalysis, because of slight 

differencesbwtween cover images and stego images, modeling image residueswill extract more discriminative 

featuresusing some hand-crafted filters than directly modelling pixel values. In YedroudjNet[30] andXuNet[14], 

the weights of convolutional kernels in the preprocessing layerare initialized by some SRM kernels. In ZhuNet[17], 

there are more SRM filters used for initialization. However,there is adefect among these models, that almost CNN 

architecturesuse the zero padding operation before convoluting tokeep the size of feature map, but this operation 

willdemage the quality of our extracted pixels‟ residues, forinstance, if a zero value is padded to the image, thenthe 

residue of this image will become large and cannot show the characteristics of this image. Consideringthe 

characteristic of noise residues extraction and theoperation of some popular steganographic algorithms, suchas 

HUGO[5], WOW[3], S-UNIWARD[4], which all usethe mirror padding operation to calculate the embeddingcost 

of the image, doing zero padding operation andoptimizing kernels as usual will damage the quality ofnoise 

extraction. According to Table 1, by using mirror-padding operation, the performance of CNN will improvea lot. 

 

Table 1 Steganalysis error probability of different optimizing strategies with S-UNIWARD at 0.4 bpp 

different strategies of optimizing kernels Our CNN YeNet 
mirror_padding optimizing 0.172 0.286 
zero_padding optimizing 0.191 0.284 

mirror_padding fixed 0.176 0.279 
 

2.2.3 Inception Module with Separable Convolution 

Inception module has recently been proved that it canimprove the model accuracy significantly in 

traditionalcomputer vision tasks, such as Inception[24-26],Xception[32]. Because of the wider parallel 

convolutional layers and shortcuts, thismodule can get more informational features from different scale thangeneral 

convolution layers but also keep the whole modelfrom getting deeper which will lead gradient vanishing.And in 

practice, we put these modules into deeper layerswhich can prevent from damage the residual informationof 

cover/stego, for each Inception module, we just usesmall sized kernels which can efficiently reduce storagespace 

and accelerate the training process.The another advantage of that is with use of multiple size of filters, the network 

will benefit from larger receptive field, and discriminate more informational features.  

 

 
Fig 3: This caption has one line so it is centretwo different Inception modules used to the proposed CNN. 

Left:TypeA Inception module for shallow layers, Right: typeB Inception module for deeper layers 
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As shown in Fig.3, we apply two different types ofInception Module to our proposed network named ”Incep-

TypeA” and ”Incep-TypeB”, more details are shown inFig.3. In the more shallow layers which are 

quippedwith ‟Incep-TypeA‟ modules, The use of a combinationof maxpooling operation and convolution operation 

willnot only extract more features in the larger field, but alsoadd more non-linear features by maxpooling ,just like 

non-linear kernels do in the preprocessing layer. In the deeperlayers which consist of several ‟Incep-TypeB‟ 

modules,we apply more branches of convolution operations whichinclude grouped convolution operations to these 

layers,aiming to extract more semantic features efficiently. 

 

2.2.4 Channel Attention Layer 

Due to the use of differentattention modules which can make the model assign different weights to the content of 

different regions in the sameinput according to the task like a brain, the performance ofthe model is improved 

greatly. such as recurrent attentionconvolutional neural network[33], and Residual AttentionNetwork [21]. At the 

point of steganalysis‟s view, theactual input to our CNN is several residual maps which arecalculated by the 

preprocessing layer‟s multiple kernels.As [9] mentioned, the different residual map processed bydifferent kernels 

has different performance of steganalysis.Inspired by those ideas, we proposed a new attention layercalled channel 

attention layer (CAL) used for our CNN-based steganalyzer. The outputs of theCAL the weight for each feature 

channels which will beused to output weighted feature maps. As shown in Fig.4, Considering the number of 

additional trainable parameters brought by this layer, weuse a simple strategy to construct this layer similar 

to[27]which is composed of global average pooling operationand several fully connected layers. But there are 

somedifferences between the CAL and SE block mentioned in[27]. In the CAL, using a depth-wise convolutional 

layeradditionally will improve the robustness of this attentionmodule rather than [27]. 

 

 
Fig 4: A channel attention module used in the proposed CNN, similar to [27] 

 

To explore the impact of using channel attentionlayers on CNN performance. We designed several CNNstructures 

for steganalysis mentioned which are appliedproposed attention layers. As shown in Table. 2, due toaddition of the 

CAL, there is slight improvement amongthese three networks including our proposed CNN. ForZhuNet and Our 

NieNet under S-UNIWARD at 0.4 bpp,both of them equipped with CAL get better performances. 

 

Table 2 Steganalysis error rate comparison of networks with channel attention layer against multiple 

steganographic algorithms at 0.4 bpp 

 S-UNIWARD WOW 
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SRNet with attention 0.249 0.215 

without attention 0.243 0.217 

ZhuNet with attention 0.201 0.175 

without attention 0.217 0.184 

NieNet with attention 0.172 0.137 

without attention 0.186 0.152 

 

2.2.5 Spatial Pyramid Pooling Module 

Spatial pyramidpooling module (SPP) is proposed in Zhu-Net[17] andhelp the model achieve better performance. 

By using theSPP module, this pooling operation can extract featureinformation in different scales such as 1 × 1, 2 

× 2, 4 × 4,and better model the local features. Besides, Benefiting fromthe fact that spatial pyramid pooling 

operation can turnthe output of feature maps into fixed sized tensor, our CNN can steganlyze arbitrary-size images. 

 

2.2.6 The Difference between SRNet, ZhuNet and OurCNN 

The comparison of three CNN-based steganalyzersisillustrated in Table 3. Compared to SRNet, the differences in 

Our CNN are usinghand-crafted kernels initializing weights of the preprocessing layer proposed in SRM[9], 

mirror-paddingoperation, deploying two types of Inception Modules (withand without separable convolution) plus 

spatial pyramidpooling module. Compared to Zhu-Net, the uniquenessof our CNN is using improved kernels and 

additionalnon-linear kernels for initialization, using mirror-paddingoperation, and using shortcut connection for all 

left layers. 

 

Table 3 The difference between the SRNet, ZhuNet, and NieNet 
Algorithm Preprocessing 

module 

Padding 

operation of 

pre-processing 

layer 

Inception or 

shorcut 

Pooling before fully 

connected layers 

SRNet Random 

initializationand 

update filters 

zero padding shortcuts global average pooling 

ZhuNet initialize with 30 

specific kernels 

and update them 

zero padding depthwise 

separable 

convolutions 

and shorcuts 

spatial pyramid pooling 

NieNet initialize with 44 

specific kernels 

and update them 

mirror padding inception 

separable 

module 

and shortcuts 

spatial pyramid pooling 

 

III. Experiments 

 
Several experiments are conductedto show the effectiveness of our proposedCNN. We compare our model with 

several CNN-based steganalyzers: XuNet[14], YeNet[15], YedroudjNet[30],SRNet[16], ZhuNet[17]. All networks 

are trained andtested on the same datasets and same steganographic algorithms (WOW[3], S-UNIWARD[4]) for 

fair comparison. 

 

3.1The Environments 

 

For steganographic algorithms, all of them are implemented on the publicly available codes. We choose the onesin 

Matlab implementation with random embedding key.As [15] mentioned, if the embedding key is unchanged,the 

generalization of networks will decrease dramatically.And by using Nvidia Tesla V100 graphic card with 32GB 

memory for training, we can use larger batch size oftraining images to get more stable parameters of 

batchnormalization layer. 

 

3.2 Datasets 
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In this paper, we use the combination of two standarddatasets which are commonly used for steganalysis to 

trainthese networks and test the performance of these networks.The first source of images is from the 

BOSSBase[34], it contains10,000 512×512 grayscaleimages taken by several devicesand is commonly used in 

steganalysis. The other is BOWS2[35], it contains 10,000 512 × 512 grayscale imageswhose distribution is similar 

to BOSSBase. Based onconsideration of GPU memory and batch size of trainingprocess, we decide to conduct 

experiments on resizedimages of 256×256 pixels created by Matlab with default settings. The setting of datasetsof 

training and testing will be detailed later. 

 

3.3 Experimental Parameters Setting 

 

Stochastic gradient descent (SGD) approach is widely used in several field of deep learning as the optimizing 

algorithm. Therefore, at the training phase of our image steganalyzer, we choose SGD to optimize our model. 

According to previous experiences and memory limitation of our graphic processing unit, batch size of our training 

data is going to be set to 32 (16 cover/stego image pairs). The ultimate goal of our training phase is to minimize the 

cross-entropy loss of outputs of our CNN. 

 

On our dataset, the model will be trained for 250 epochswith a learning rate of r= 0.0001. The learningrate will be 

modified (divided by 5) at epoch 100,150,200respectively. According to our practical experience, theCNN training 

will converge totally at about 200 epochs. We train and test all models used in this paper for several times using 

same datasetsetting (uniform training/validation/testing sets). Thefinal experimental results are concluded by 

averaging thesetesting results.The metric of these CNN models was defined by thesteganalysis error rates Pe = 1-

Pacc. 

 

3.4 Experimental Results 

 

3.4.1 BOSSBase Only 

As shown in Table4, the performance of several steganalyzers are reported in our uniform experiment settings. 

First, cover images of BOSSBase are randomly divided into three parts: 4000 cover/stego image pairs are used for 

training networks, 1000 cover/stego image pairs are used as validation set and 5000 pairs as test set. In this table, 

we use two steganographic algorithms S-UNIWARD and WOW to conduct experiments under different payloads. 

 

Table 4 Steganalysis error rate comparison. 

All networks are trained and tested on BOSSBase with same settings 

Algorithm WOW S-UNIWARD 

Payload/bpp 0.2 0.4 0.2 0.4 

XuNet 0.331 0.283 0.354 0.312 

YeNet 0.324 0.277 0.341 0.298 

YedroudjNet 0.317 0.252 0.327 0.279 

SRNet 0.251 0.204 0.294 0.243 

ZhuNet 0.215 0.176 0.258 0.217 

NieNet 0.223 0.167 0.247 0.213 

 

In different experiment settings including different algorithms and different payloads, our CNN has gotten better 

detection performance over the other CNN-based steganalyzer. Specifically, under the circumstance of same 

payload and different algorithms.(S-UNIWARD and WOW), the detection performance of our proposed CNN is 

ahead of other steganalyzers except ZhuNet, the proposed CNN and ZhuNet get comparable detection performance 

under same payload.(such as 21.5% versus 22.3% under 0.2 bpp with WOW, 17.6% versus 16.7% under 0.4 bpp 

with S-UNIWARD)Similar to other networks under same algorithm and different payloads, our proposed CNN can 

get better performance under larger payload.(for example 21.3% versus 24.7% under S_UNIWARD with 0.2 bpp 

and 0.4 bpp)We speculatethat the reason for this phenomenon is that because of a small number of training datasets, 

these attention modules used are not well trained, when the number of training samples goes larger, this 
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phenomenon will not exist, and the next part of the experiment also verifies this idea. 

 

3.4.2 BOSSBase and BOWS2 

For well training networks with larger number of training samples, we add extra image sources BOWS2 

(containing 10000 images which has the similar distribution with BOSSBase) into our training set. Therefore, the 

training set now is composed of 14000 pairs of cover/stego images. 

 

Table 5Steganalysis error rate comparison. 

All networks are trained and tested on BOSSBase + BOWS2 with same settings 

Algorithm WOW S-UNIWARD 

Payload/bpp 0.2 0.4 0.2 0.4 

XuNet 0.318 0.243 0.346 0.234 

YeNet 0.284 0.211 0.367 0.247 

YedroudjNet 0.278 0.177 0.361 0.229 

SRNet 0.256 0.156 0.348 0.218 

ZhuNet 0.241 0.127 0.286 0.164 

NieNet 0.237 0.131 0.261 0.152 

 

As shown in Table 5, under the circumstance of larger training set, the performance of all networks has been 

improved simultaneously, in almost settings, our proposed CNN has outperformed other CNN-based steganalyzers. 

As we say above, once our attention modules can be well trained with larger datasets, our CNN will get better 

detection performance. 

 
V. Conclusion 

 

In this article, we apply more techniques used for traditional computer vision tasks to architecture of CNN-based 

steganalysis.The advantages of our proposed CNNare following: First, wedeploy more pre-defined convolution 

kernels and use a novel paddingoperation in preprocessing layer, these operations make our CNN extract more 

discriminative features. More convolution kernels enhance the robustnessof this model. Second,we continuously 

combine separableconvolution mentioned in [17] and Inception Module toextract channel correlation. Finally we 

use channel attentionlayer which will increase the computation slightly to makeour model allocate different 

channel different weight. Byusing these tricks, the network performance is improved.Additionally, using SPP-

module, an arbitrary sized imagecan be steganalyzed by the CNN. In the furture, the application of attention 

mechanism on image steganalysis should be exploited thoroughly, and we will design more powful attention 

module for image steganalysis. 
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