
CONVERTER MAGAZINE 

Volume 2021, No. 1 

 

ISSN: 0010-8189 

© CONVERTER 2020 

www.converter-magazine.info 

94 

 

Intelligent Collaboration Technology of Software Developers Based on 

Data Driven 

 

Ming Wan* 

Aviation Engineering Institute, Xuchang Vocational Technical College, XuChang, Henan, China 

*Corresponding Author. 

 

Abstract 

Software development highly depends on the group contribution of developers, so improving the cooperation 

efficiency of developers is an important issue to improve the efficiency and quality of software development. In 

recent years, it has become a hot topic in the field of software engineering to improve the intelligent level of 

software development by mining and using the knowledge contained in software big data. However, the research 

on software developers and their group collaboration methods has not yet formed systematic research results. 

Therefore, this paper takes the developer group as the research object, through in-depth analysis of the behavior 

history data of developers, studies the key technologies of intelligent cooperation, and develops the corresponding 

support environment based on this. This paper first analyzes and summarizes the related research work. Then, 

the capability feature model and collaboration relationship model of software developers are given, and the 

knowledge map of developers is constructed. Furthermore, based on the knowledge map of developers, the 

collaborative development method based on intelligent recommendation is introduced by taking two developer 

recommendation methods as examples. Based on the above key technologies, the corresponding supporting tools 

are developed, and the prototype system of intelligent collaborative development environment is constructed. 

Keywords: Software development, group contribution, collaboration efficiency, data driven. 

I. Introduction 

The simple object-oriented, component-oriented and service-oriented software development technology can not 

meet the needs of software development under the Internet environment, and there are some limitations in the 

basic software model, software methods and technology, basic support mechanism and so on [1-2]. Software 

development in the Internet environment usually can not assume that all parts of the whole system comply with 

the unified design and management, and can not completely and accurately determine the structure of the system 

and the behavior of each component. At the same time, due to the dynamic environment and decentralized 

management, different collaborative behaviors may need to be implemented at different times. Therefore, on the 

one hand, the software model under the Internet environment should have an effective collaboration mechanism 

to support, manage and control the interaction between entities on the Internet, on the other hand, it must provide 

enough flexibility to adapt to the different needs of the environment and applications. In order to adapt to such an 

open environment, large-scale resource sharing and integration and a variety of new computing modes, such as 

grid computing, mobile computing, pervasive computing and so on, marked by WWW, computing grid, network 

embedded system, have emerged [3-5]. However, none of these technologies can solve the problems of autonomy 

and collaboration of Internet based software systems in dynamic open environment. 

The software system based on Internet can be regarded as a software alliance which is formed dynamically by a 

series of distributed autonomic computing resources to complete specific tasks. Accordingly, the software system 

began to present a flexible, multi-objective, continuous reactive new system form. From a technical point of view, 

software entities supported by software components and other technologies exist on each node of the Internet in 

an open and autonomous way [6]. Any software entity can interact, interact, collaborate and alliance with other 

software entities in various collaborative ways in an open environment, and can perceive the dynamic changes of 

the external network environment and change with the development of the Internet According to the function 



CONVERTER MAGAZINE 

Volume 2021, No. 1 

 

ISSN: 0010-8189 

© CONVERTER 2020 

www.converter-magazine.info 

95 

 

index, performance index and credibility index, these changes are adjusted statically and dynamically to make the 

system have as high user satisfaction as possible. References [7-10] call such a new software form network 

software. Specifically, network architecture software includes a group of software entities distributed in each node 

of the Internet environment with the characteristics of subjectivity, and a group of connectors used to support 

these software entities to cooperate with each other in various ways. These entities can sense the changes of the 

external environment, through the method of architecture evolution (mainly including the increase and decrease 

of software entities and connectors) Network architecture software, which is quite different from traditional 

software, is a behavior mode of cooperation between entities on demand in the micro level, and an application 

mode of spontaneous formation of entities in the macro level Correspondingly, the development of network 

architecture software presents the basic system of "order" by combining the original "out of order" basic software 

resources. With the passage of time, the changes of these systems and resources in function, quality and quantity 

lead to the state of "out of order" again. This process from "out of order" to "in order" goes back and forth Ring 

is basically a spiral way from bottom to top and from inside to outside. 

II. Problem statement 

Because there are many differences between the conceptual framework and logical connotation of Netsoftware 

and the classical software system, it inevitably challenges the traditional classical software method and technology 

system in theory, model and technology. These challenges are reflected in the software collaboration mechanism: 

(1) Separation of Software Collaboration: how to separate the collaboration mechanism from software entities and 

provide flexible and diverse collaboration methods to support the collaboration of software structure model. 

(2) Adaptability of operation mechanism: how to make the software system adaptive to the changes of external 

environment in an open, dynamic and difficult to control environment. 

(3) Formalization of core theory: how to find a more appropriate and consistent formal system for the above 

technologies to meet the needs of open environment, which is the theoretical basis of the new generation of 

software collaborative methodology. Therefore, the research of software collaboration framework and its theory 

should focus on the above key issues. 

On the basis of the above analysis, we propose to use Petri net technology and mobile agent which have been 

widely used in the field of computer and automation to study the cooperation mechanism of network software. 

The idea can be simply expressed as follows: modeling the composition of software entity services with the help 

of Petri net theory to complete the tailoring and integration of software entity functions in the open environment. 

Using data-driven as the implementer of collaborative mechanism, an XML format assembly model with data-

driven path information and function body separation is designed to support the dynamic assembly between 

software entities. The ripple effect of entity evolution on the system is measured by influencing factors. According 

to the dynamic operation rules, the dynamic adjustment strategy is determined when the system evolves. 

Network cooperation software is an abstraction of the basic form of software system in the open, dynamic and 

changeable environment of Internet. It is not only a natural extension of the traditional software structure, but also 

has unique basic characteristics different from the traditional software form developed in the centralized and 

closed environment. Network collaboration software autonomy refers to the relative independence, initiative and 

adaptability of software entities. From a technical point of view, network collaboration software entities are 

generally developed and managed independently, and they may run independently on different network nodes. 

Their goals and services are determined by their owners, and their behaviors are driven by their own goals, rather 

than just passively used for assembly or deployment. In the process of running, they may collect all kinds of 

change information of the environment in real time, and automatically adjust their own behavior to adapt to the 

change of the environment according to the preset strategy. 

(1) Collaboration refers to the interconnection, intercommunication, collaboration and alliance between software 

entities in a network collaboration software system in an open network environment. From a technical point of 



CONVERTER MAGAZINE 

Volume 2021, No. 1 

 

ISSN: 0010-8189 

© CONVERTER 2020 

www.converter-magazine.info 

96 

 

view, traditional software systems tend to adopt a single static connection mode in a closed and centralized 

environment, while network collaboration software supports the adaptation of the connection mode Adaptability 

adjustment, such as switching of different interoperability protocols, rising and falling of connection security 

level, transition of synchronization and asynchronism, adjustment of message passing reliability, etc. 

(2) Reactivity refers to the ability of network collaboration software to perceive the external operation and use 

environment and provide useful information for system evolution. From a technical point of view, the external 

environment of network collaboration software is composed of other network collaboration software and the 

underlying support platform. Therefore, reactivity requires network collaboration software to be able to expose 

its own state and behavior information in a certain way, as well as provide information for system evolution 

Network collaboration software support platform is required to open the bottom implementation details and 

running state. 

(3) Evolvability refers to the dynamic evolution of network collaboration software structure according to the 

application requirements and network environment changes. It is mainly manifested in the variability of the 

number of entity elements, the adjustability of structural relationship and the dynamic configurability of structural 

form. From the technical point of view, evolvability requires the dynamic adjustment ability of software 

architecture. 

(4) Polymorphism means that the effect of network collaboration software system reflects the compatible multi-

objective. It can meet a variety of compatible target forms under the dynamic network environment according to 

some basic collaboration principles. From the technical point of view, polymorphism requires not only the support 

of multi-objective modeling in the process of system development, but also the dynamic modeling based on the 

environment changes during the system operation Based on the above analysis, the main technical commonness 

of many characteristics of network collaboration software can be attributed to the adaptability, which is embodied 

in the adaptability of software entity and software structure, that is, the network collaboration software can 

accurately capture changes and make reasonable adaptive adjustment at the right time and in the right situation, 

To meet the requirements of function and quality. 

III. Software collaboration framework for network architecture software 

From the perspective of engineering design, a domain world can be regarded as a distributed system in which 

multiple autonomous nodes cooperate to complete specific tasks. The system has two basic elements: autonomous 

entity and activity. Autonomous entity refers to the experts, organizations or tools that participate in the design 

activities in the system, and the activity is the process of product design by autonomous entity. The activities of a 

collaborative design system can be described by three levels which is shown in Figure 1. 

 

Fig 1: Software collaborative design system 



CONVERTER MAGAZINE 

Volume 2021, No. 1 

 

ISSN: 0010-8189 

© CONVERTER 2020 

www.converter-magazine.info 

97 

 

The first level is the analysis and decision-making level, whose main activities are browsing, retrieval, data 

analysis, master planning and decision-making. The second layer is the information sharing and exchange layer, 

whose main activities are to provide support for information exchange, resource sharing, collaborative work and 

analysis and decision-making of the lower layer. The third layer is the collaborative design layer, which carries 

out specific design activities. 

Therefore, a collaborative design system should include the core and control entities for analysis and decision-

making, the functional entities to support collaborative work, information exchange and resource sharing, and the 

design transaction entities to participate in specific design activities. The collaborative process model for network 

architecture software is shown in Figure 2. The collaborative process model can be divided into five parts: analysis 

part, design part, assembly part, deployment part and maintenance and evolution part. 

 

Fig 2: Collaborative model of network architecture software 

(1) The main purpose of the analysis part is to smooth the gap between requirement and design. In the requirement 

analysis stage, the problem space and user requirements are organized in a structured way. At this stage, we have 

no requirements for the specific form of the product. We only need to be able to convert it into software 

architecture relatively conveniently, naturally and directly. 

(2) In the design part, the requirements specification of the software system is studied, the corresponding global 

design decisions are made, the components and connectors in the conceptual software architecture are further 

refined, the necessary software entities and mobile agent connectors are created, the static and dynamic software 

architecture model (including type diagram, instance diagram and process diagram) is established, and the 

requirements specification and software architecture are maintained The mapping between architectures. 

(3) The assembly part is equivalent to the implementation phase of traditional software development. Different 

from the traditional software development method of programming according to the design to achieve the target 

system, the basic functional unit of network software is the existing and running network software entity. 

Therefore, the focus of network software implementation is not programming but assembly, that is, selecting the 

entity that conforms to the software architecture, and making all entities interact according to the provisions of 

the software architecture. If the entity or interaction does not meet the requirements of software architecture, it 

needs to be adapted. If the adaptation fails. New entities need to be developed to achieve the target system. 

(4) The deployment part is a component set for the normal operation of the network architecture software. The 

information needed for deployment is complex, which often needs to be filled in manually. In fact, most of the 

deployment information already exists in the system design and implementation stage, and can be reused after 

transformation or fusion. On the other hand, new entities or new collaborations may need to change the 

organizational relationship between existing entities, and the implementation of this organizational relationship is 

also one of the main tasks of deployment. 



CONVERTER MAGAZINE 

Volume 2021, No. 1 

 

ISSN: 0010-8189 

© CONVERTER 2020 

www.converter-magazine.info 

98 

 

(5) Maintenance and evolution stage: in a sense, the development method of network architecture software can be 

regarded as the continuous and iterative refinement, mapping and transformation of the software architecture of 

the target system in different views. After each refinement and transformation, the syntax and semantic 

information of the software architecture becomes more accurate and complete. 

Architecture is the basic and main form of the whole system. It should show the characteristics of the software. 

Architecture includes a series of abstract patterns to guide the design of large software system. For large-scale 

complex software systems, the overall architecture design and specification is much more important than the 

algorithm design and data structure selection. A good architecture is conducive to improving software productivity 

and solving software maintenance problems. The framework system described in this paper refers to the idea of 

software reuse based on component composition, and adopts the loose coupling structure of separating the 

software entity part from the collaboration part. The software entity part and the collaboration part are 

independently developed by the service provider and the service integrator, as shown in Figure 3. This structure 

abandons the traditional software structure characterized by tight coupling structure, centralized development and 

reprogramming. In the open network environment, facing the individual needs of integrators, taking into account 

the individual characteristics of software entities, various software services are integrated through the 

collaborative part, and in the process of adapting to the external dynamic environment change or user needs 

change, the static adjustment or dynamic evolution is constantly carried out, so as to improve the user satisfaction 

as much as possible. 

 

Fig 3: Data driven collaborative process model 

(1) Application layer: the application layer mainly includes two parts: user requirements description and 

application software function description. It adopts a way similar to function decomposition to organize problem 

space and user requirements, semi automatically generates conceptual software architecture, smoothes the gap 

between requirements and design, and provides a basis for the organization and co evolution of software 

architecture in control layer. Data driven software collaboration framework is shown in Figure 4. 

(2) Control layer: control layer is the core of software collaboration system, which is also the main content of this 

paper. It is mainly composed of collaborative engine module and monitoring part, which is the intelligent part of 

the whole architecture. The main work of the collaborative engine is to assemble the isolated software entities in 

the entity layer into a logical application software system through the corresponding connectors according to a 

certain logical relationship. The monitoring part can monitor the changes of user requirements and environment 

in real time, and feed the structure back to the collaborative engine. The design of this layer draws on the 

knowledge of web service composition, software architecture dynamic evolution and mobile agent, so that the 

system can customize the corresponding application software according to the customer's needs, and dynamically 

evolve its architecture with the change of requirements and environment, so as to improve the user's satisfaction. 

(3) Entity layer: entity layer is the basis of control layer, including connection module based on mobile agent and 

software entity with distributed, autonomous and heterogeneous characteristics in open environment. 



CONVERTER MAGAZINE 

Volume 2021, No. 1 

 

ISSN: 0010-8189 

© CONVERTER 2020 

www.converter-magazine.info 

99 

 

 

Fig 4: Data driven software collaboration framework 

IV. Conclusion 

This paper first introduces the characteristics of general collaborative system in general environment, and on this 

basis, according to the requirements of Internet environment and the design concept of network architecture 

software, it explains the design requirements of software collaborative framework for network architecture 

software and the specification definition of framework architecture. Referring to the common collaborative system 

model, this paper analyzes the software collaborative system for network architecture software from multiple 

perspectives, and designs the data-driven collaborative model and the overall architecture of the collaborative 

framework. 

References 

[1] Lu Zhengding, Huo Xiaoli. Research on Intelligent Software Collaborative Development Based on 

Agent Technology. Computer Science, 2007, 34 (003): 208-210 

[2] Wang Tao, Yin Gang, Yu Yue. Method and Practice of Software Development Collectivization Based 

on Swarm Intelligence. Chinese Science: Information Science, 2020 (3): 318-334 

[3] Lan Wenfei, Lu Jiguang. Application of Intelligent Agent in Component Library System. Computer 

Engineering and Design, 2007,28 (017): 4089-4090 

[4] Chen Tongyang, Han Yuhe, Gu Xinlei. Intelligent Garbage Cleaning System Based on Bdi. Software, 

2012, 33 (9): 61-62 

[5] Ni Hongmei. Design of Cooperative Intelligent Question Answering System Based on Multi Agent. 

Journal of Yangtze University (self Science Edition), 2009, 000 (01x): 208-209 

[6] Chen Liuyang, Han Benshuai, Liu Ningning. Development of Intelligent Statistical Software for 

Communication Optical Cable in Substation Automation System. Electrical Technology, 2014, 4: 27-

28 

[7] Zhao Xinpei, Li Mingshu, Chen Zhenchong. a Negotiation Based Software Process Collaboration 

Method. Computer Research and Development, 2006 (02): 314-320 

[8] Zhou Mingjun, Xu Lishuang, Tian Feng. Research on Collaborative Pen Based User Interface 

Development Tool. Acta Sinica Sinica, 2008 (10): 304-312 

[9] Xie Xinqiang, Yang Xiaochun, Wang Bin. a Multi Feature Fusion Software Developer 

Recommendation. Acta Sinica Sinica, 2018, 29 (008): 2306-2321 

[10] Bergalais Industrial Automation Shanghai Co., Ltd. Using Automation Studio 4 to Realize Intelligent 

Engineering Design. Automation Expo, 2015 (07): 97-99 


