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Abstract 

This paper designed an intelligent service robot system in highway based on multi-sensor fusion. The mobile robot 

attempts to fuse the lidar information and monocular vision information to estimate the pose of itself and obtain an 

environmental map. It adapts a new SLAM method which combines lidar and vision information. Lidar is used to 

obtain the 2D occupancy grid map and the monocular vision SLAM algorithm uses the Extended Kalman Filter 

(EKF) to magnify the pose estimation. The 3-DOF pose provided by lidar is obtained through Cartographer 

algorithm and the monocular vision SLAM who offers the 6-DOF pose is realized with ORB-SLAM. The 

experimental results show that the system is effective in application as an intelligent service robot of highway. 

Keywords: Monocular Vision, SLAM, EKF, Lidar-based, Service Robot, Sensor Fusion. 

I. Introduction 

Intelligent transportation has become a main feature of the transportation system, exerting a broad and profound 

impact on the industrial governance system and service model. After the accident, there is a large area of traffic 

congestion, and it is difficult for the accident treatment vehicle to enter the accident scene at the first time. In the 

scene of rescue, the mobile robot needs to navigate in unknown environments relied on its own onboard sensors. 

The mobile robot adapts a new SLAM method which combines lidar and vision information. Lidar is used to 

obtain the 2D occupancy grid map and the monocular vision SLAM algorithm uses the Extended Kalman Filter 

(EKF) to magnify the pose estimation. The 3-DOF pose provided by lidar is obtained through Cartographer 

algorithm and the monocular vision SLAM who offers the 6-DOF pose is realized with ORB-SLAM [1]. A 2D 

map is generated to calculate the pose not sensitive to errors. The complete 6-DOF pose estimation is got by EKF 

(Extended Kalman Filter) which filters the estimated position of robot with IMU and visual SLAM information.  

This paper is devoted to the development of an outdoor intelligent service robot which can be transported by police 

vehicles when an accident occurs, and then carry necessary drugs to the destination at the same time.  

II. Related Works

2.1 Lidar SLAM 

Smith et al. [2] proposed a Kalman filter-based real-time localization and mapping technology (Simultaneous 

Localization and Mapping, or SLAM) in 1988, which laid a basic blueprint for the development of the entire 

SLAM. 

On the basis of the Kalman filter, the extended Kalman filter method and the lossless Kalman filter method have 

been proposed one after another, which became the most popular SLAM algorithm at that time, but the use of the 

extended Kalman filter method requires the definition of road signs in advance, and once the noise of the strong 
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assumptions of distribution and state transition are not established, the algorithm will diverge [3]. Therefore, 

scholars such as Murphy [4] later adopted the Rao-Blackwellised particle filter method, but this method often 

causes the map to occupy a lot of resources and affects the performance of the SLAM algorithm. In order to reduce 

resource consumption and improve the accuracy of map construction, Grisetti et al. [5,6] proposed the GMapping 

algorithm based on the Rao-Blackwellised particle filter method, which is currently a relatively mature laser 

SLAM method. 

 

The graph optimization scheme proposed by Gutmann et al.[7] is beneficial to the improvement of computer 

performance and has been paid attention again. Algorithms such as Cartographer [8] and LSD-SLAM [9] are 

developed based on graph optimization theory. This method divides the SLAM process into a front-end and a 

back-end. The front-end mainly updates the pose information of the robot by filtering. Most of the back-end 

optimizes the global pose and landmark information of the robot through optimization methods, forming a typical 

SLAM system framework. When loopback is detected, global optimization can be performed to improve the 

accuracy of map construction in complex environments, but the real-time performance is poor. 

 

2.2 Monocular Vision SLAM 

 

According to different working methods, vision sensors are mainly divided into three categories: monocular 

cameras, binocular cameras and RGB-D cameras [10]. Monocular cameras are favored by researchers around the 

world due to their low cost, small size, and low power consumption. However, monocular cameras alone cannot 

restore the true scale of the visual map, so they usually need to be combined with other perceptual sensors. 

The research on visual positioning is mainly the research on visual SLAM. The front end and the back end together 

form a complete visual SLAM system. The front-end is the realization of the visual odometer, which mainly 

includes the processes of feature extraction and matching, pose initialization, and tracking. The back-end 

eliminates the cumulative error of the system by detecting closed-loop constraints and constructing global 

optimization problems, completing the overall optimization of the camera trajectory and the map point cloud, and 

constructing and storing a 3D point cloud map for visual positioning.  

 

When the robot is performing laser global positioning, it is easy to fail in positioning where features are missing. 

At this time, if there is the aid of visual positioning, the stability will be greatly improved. ORB-SLAM includes 

modules common to all SLAM systems: tracking, mapping, re-localization, and loop closing. ORB-SLAM adopts 

the Bag of Words model to perform loop detection and re-localization. The effect of eliminating the cumulative 

error of the system positioning is obvious. The bag of words model greatly reduces the amount of calculation when 

the system searches for features [11]. When the robot encounters some unexpected situations such as loss of 

positioning, the bag of words model can be used to reposition the robot's approximate pose on the map in a short 

time. 

 

III. System Configuration 

 
3.1Coordinates System Establishment 

 

The chassis of the mobile robot adopts four-wheel structure, which is symmetrically distributed, and a variety of 

sensors are arranged on the platform. In this paper, the Cartesian coordinate system is adopted, and there are 

mainly three coordinate systems: the world coordinate system𝑋𝑊𝑌𝑊𝑍𝑊  , the robot coordinate system 𝑋𝑅𝑌𝑅𝑍𝑅  and 

the sensor coordinate system 𝑋𝑆𝑌𝑆𝑍𝑆. The coordinate systems are all right-handed. Among them, IMU and GPS 

sensors are integrated with the robot chassis and can be incorporated into the robot coordinate system, so the sensor 

coordinate system mainly refers to the coordinate system where the lidar is located. Therefore, the coordinate 

system relationship of the 2D mobile robot can be expressed as figure 1.  
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Fig 1: The Coordinate System in 2D Plane 

 

The origin of the world coordinate system 𝑋𝑊𝑌𝑊𝑍𝑊  is the starting point of the robot’s motion, and the origin of the 

robot coordinate system 𝑋𝑅𝑌𝑅𝑍𝑅 is the center of gravity of the moving chassis. The 𝑋 and 𝑌 axes of the sensor 

coordinate system 𝑋𝑆𝑌𝑆𝑍𝑆 are the same as that of the mobile robot, but there is deviation in the 𝑋 and 𝑍 axes. At 

time 𝑇, the robot coordinates in 𝑋𝑊𝑌𝑊𝑍𝑊  are (𝑥𝑡 , 𝑦𝑡), and the direction of motion is expressed by 𝜃([−𝜋, 𝜋]) of 

the 𝑋-axis of the robot coordinate system XRYRZR, moving forward from the X-axis of the XWYWZW . Therefore, 

at time T, the robot coordinates in XWYWZW are expressed as (xt, yt, θt). The above coordinate systems can be 

transformed between each other by rotation and translation. The rotation transformation matrix of robot coordinate 

system XRYRZR to world coordinate system XWYWZW is as follows.  

 

𝑅𝑊
𝑅 =   

cos 𝜃𝑇 − sin 𝜃𝑇 0
sin 𝜃𝑇 cos 𝜃𝑇 0

0 0 1

                                                                       (1) 

 

The rotation transformation matrix from the world coordinate system XWYWZW to the robot coordinate system 

XRYRZR is written as Eq.2.  

 

𝑅𝑅
𝑊 =   −

cos 𝜃𝑇 sin 𝜃𝑇 0
sin 𝜃𝑇 cos 𝜃𝑇 0

0 0 1

                                                                        (2) 

 

There is a point Q at time T, and its position coordinate in XRYRZR is expressed as (xt, yt).  

 

 
𝑥𝑞
𝑦𝑞
 =  

𝑋𝑞 cos 𝜃 − 𝑌𝑞 sin 𝜃 + 𝑥𝑊
𝑋𝑞 sin 𝜃 − 𝑌𝑞 cos 𝜃 + 𝑥𝑊

                                                                   (3) 

 

According to the above transformation matrix, the coordinate of Q in XWYWZW can be deduced as Eq.3. 

 

3.2System Model 

 

The robot is driven by 4 wheels, as shown in figure 2. It is equipped with a lidar, an IMU, a GPS, a micro host with 

the ROS, a screen and the RealSense R200 camera.  

 



   CONVERTER MAGAZINE 

  Volume 2021, No. 5 

 

ISSN: 0010-8189 

© CONVERTER 2021 

www.converter-magazine.info 

400 

 

 
 

Fig 2: The Mobile Robot 

 

3.2.1 Control Unit  

The core of the robot control unit is STM32, which is directly connected with the host through USB, and the motor 

and voltage regulator are connected with STM32 through a control board.  

 

The procedure converts the input instructions into the corresponding signals and transmits them to STM32, and 

then STM32 drives the motor to realize the movement according to the instructions. In the process of navigation, 

the procedure transmits the corresponding drive signal to STM32 according to the planned path and motivates the 

robot to move along the planned path.  

 

3.2.2 Motion model  

Four-wheel differential vehicle has a light gray outer contour, which can be similar to a dark gray single-wheel 

model. As shown in figure 3, four-wheel drive has strong ability and driving force in straight walking.  

 

 
Fig 3: The Motion Model of The Robot 

 

The wheel radius is 𝑅, the angular velocity of the left and right wheels is u, and the linear velocity is 𝑣𝐿 and 𝑣𝑅  

respectively. 𝐵 is the coordinate system of the car, whose origin is the center of the car, X-axis is the forward 

direction of the car, and the angular velocity of rotation around ICR (instantaneous center of rotation) is 𝜃′. W is 

the distance between the left and right wheels, 𝑅𝑅 is the rotation radius of the right wheel, and𝑅𝐿 is the rotation 

radius of the left wheel, and the deduced robot motion model is  𝑞 . The equations are shown as Eq. 4.  
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𝑢 =  𝑢𝐿 𝑢𝑅 
𝑥 = 𝑣 cos 𝜃
𝑦 = 𝑣 sin 𝜃

𝜃′ =
𝑣𝐿
𝑅𝐿

=
𝑣𝑅
𝑅𝑅
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                                              (4) 

 

3.2.3 Sensor Configuration1  

The robot is equipped with a variety of sensors, including Silan A2 lidar, IMU (MPU6050), and ATGM332D GPS 

sensor, which are directly connected to the host through USB to TTL interface, a RealSense R200 camera which 

can be seen in figure 2. By running the corresponding ROS program, the data of the sensor can be read directly, 

and the corresponding topic can be published. IMU can provide linear acceleration, angular velocity and other data 

for pose estimation, while GPS can realize the absolute positioning of the robot in the outdoor environment. 

 

IV. Sensor Fusion Slam 

 

 
 

Fig 4: The Frame of the Proposed Method 

 

4.1Lidar SLAM 

 

4.1.1 Local maps 

The main function of the local SLAM is to establish and maintain submaps, which is a loop-closed iterative 

process. Whenever a frame of lidar scan data is obtained, the position at this moment is regarded as a node to 

match with the nearest submap. To obtain an optimal pose, the generation of submaps requires continuous scan 

frames, and a series of submaps generate a global map [12]. The pose of the submap scanning frame 𝜁 can be 

represented by 𝑇 transformation, and 𝑇 can convert the scanning frame into a frame in the submap (as is shown in 

figure 4). 

 

                                                         𝑇 =  
cos 𝜁𝜃 −sin 𝜁𝜃
sin 𝜁𝜃 cos 𝜁𝜃

 𝑝 +  
𝜁𝑥
𝜁𝑦
                                                       (5) 
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The submap is shown in the form of occupied grid map. After the lost collision algorithm, each scan frame that 

collides with the object is inserted into a submap grid point which is combined with the segmented pixels, and the 

lost scan frame is inserted into the grid pixels which has already been occupied. 

 

4.1.2 Scan Matching 

Scan matching uses two or more continuous scan frames to calculate the posture of the robot to achieve the 

purpose of relative positioning. The obtained posture will be used as the reference coordinate of the scan frame 

inserted into the submap.  

 

The process of scanning and matching is realized by the Ceres method, which uses an optimized method to obtain 

the pose. The initial pose provided by this method should be as accurate as possible [13]. The error of a given grid 

matching degree is used as a residual function, and the pose is iterated to converge using this as a reference.  

 

                                                            𝑎𝑟𝑔𝑚𝑖𝑛   1 −𝑀𝑠𝑚𝑜𝑜𝑡 𝑕 𝑇𝑘  
2

𝐾

𝑘=1

                                              (6) 

 

As shown in Eq. 6, 𝜁 is the scanning pose, 𝑇𝜁  converts 𝑕𝑘  from scanning frame to submap frame according to 𝜁. 

𝑀𝑠𝑚𝑜𝑜𝑡 𝑕  function is the smooth form of the probability value in local submap. When two scan frames match, you 

can use IMU to measure the rotation component 𝜃 in the pose. 

 

4.1.3 Close Loops Optimization 

Sensor noise, grid map resolution and other reasons will affect the accuracy of the pose estimation in local SLAM. 

Although the error is small, it will accumulate with the change of time, and as the distance of advancement 

increases, especially the drift error will become larger [14]. Therefore, the global SLAM uses the sparse attitude 

adjustment (SPA) method to reduce such errors. The closed loop optimization process matches the sensor scan and 

the accumulated submap to identify the visited area. The optimization problem can be expressed by a nonlinear 

least squares problem. Every few seconds, the ceres matcher will perform calculations such as Eq.7.  

 

                                                      𝑎𝑟𝑔 min
𝑝𝑚 ,𝑝𝑠

1

2
𝜌 𝐸2  𝜁𝑖

𝑚 , 𝜁𝑗
𝑠; ,

𝑖𝑗

𝜁𝑖𝑗                                               (7) 

 

𝐸2  𝜁𝑖
𝑚 , 𝜁𝑗

𝑠; ,

𝑖𝑗

𝜁𝑖𝑗 = 𝑒 𝜁𝑖
𝑚 , 𝜁𝑗

𝑠 ; 𝜁𝑖𝑗  
𝑇
 𝑒 𝜁𝑖

𝑚 , 𝜁𝑗
𝑠; 𝜁𝑖𝑗  

−1

𝑖𝑗

𝑒 𝜁𝑖
𝑚 , 𝜁𝑗

𝑠; 𝜁𝑖𝑗  
𝑇

= 𝜁𝑖𝑗 −  
𝑅𝜁𝑖

𝑚
−1  𝑡𝜁𝑖

𝑚 − 𝑡𝜁𝑗
𝑠 

𝜁𝑖;𝑚
𝑚 − 𝜁𝑗 ;𝜃

𝑠
 

                              (8) 

 

Among them, 𝑝𝑚 =   𝜁𝑖𝑚  𝑖=1,...𝑚 represents the submap pose, and 𝑝𝑠  =   𝜁𝑗𝑠  𝑗 =1,...𝑛
represents the scan pose. They 

can restrict 𝐸 to optimize [15], whose calculation method of  𝐸 is shown in Eq.8. 

 

4.2Monocular Vision SLAM 

 

The visual SLAM is based on ORB-SLAM, which is used to obtain 6-DOF pose estimation. Extended Kalman 

filter in this approach combines the final estimation with mobile robot pose provided with the sensors to obtain a 6-

DOF estimate of the robot position in the generated map [16]. The structure of the VSLAM is shown in figure 5. 
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Fig 5: Description of ORB-SLAM 

 

4.2.1Description of ORB-SLAM 

ORB-SLAM is a slam system based on feature points which can build the map in real-time. ORB-SLAM can run 

in various environment and it has an excellent performance in large-scale environment, small-scale environment, 

indoor and outdoor environment. The system is robust to drastic motion, and it supports loop closing detection and 

relocation based on broad baselines. The system contains 3 parts which is common to all SLAM algorithms, they 

are Tracking, Mapping, Re-localization, and Loop closing. 

 

4.2.2Map Initialization 

Relative pose of the two frames is calculated in map initialization to triangulate a set of initial map points
[1]

, and 

then use it for key frame tracking. To find a camera pose, we use the PnP algorithm for every keyframe by 

performing alternately RANSAC iterations. Once a camera pose with enough interior points is found, we will 

optimize the pose and use the map points of candidate keyframes to execute a guided search for more matches. 

Finally, optimize camera pose again, if there is enough interior point support, the tracking process will continue. 

 

4.2.3Tracking Local Map 

The tracking thread provides positioning and map construction. After detecting the ORB angle, the tracking thread 

gradually develops the map on the restored 3D map points and calculates the camera pose at the same time. 

Tracking is performed in a smaller subset of the entire map, called the local map, which covers the currently visible 

keyframes and some connected keyframes to speed up this process. 

 

4.2.4Loop Closing 

Loop-closure detection enhances the accuracy of SLAM algorithms. Bag of words method is used in ORB-SLAM 

loop-closure to search for loop candidate keyframes in the local map. And then loop correction merges the repeated 

map points and insert new edges in the co-visibility map that closes the additional loops. In order to effectively 

close the loop, pose graph optimization is performed on the basic graph to distribute loop closure errors along the 

graph. 

 

4.2.5Data Fusion with EKF 

To make full use of the available data, we adapt EKF to align the time in the robot system. 

The parameters are as follows. (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡) is the position of the mobile robot, (𝑣𝑥𝑡 , 𝑣𝑦𝑡 , 𝑣𝑧𝑡 ) is the velocity of the 

robot, (Φ𝑡 , Θ𝑡 , Ψ𝑡  ) is the roll, pitch and yaw angles. These parameters are all in the world coordinate. 

The visual SLAM is running, the 6-DOF pose is transformed from the mobile robot to the robot coordinate, so we 

can obtain the pose of the robot. 𝐸𝑐,𝑡  represents the estimated camera pose and 𝐸𝐷,𝑡  is the transformation from 

camera to the mobile robot. Function 𝑓 represents the transformation function from SE(3) to the vector form. 
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𝑧𝑣𝑠𝑙𝑎𝑚 ≔ 𝑓 𝐸𝐷𝐶 , 𝐸𝐶,𝑡 ∈ 𝑅
6

𝑕𝑣𝑠𝑙𝑎𝑚  𝑥𝑡 ≔  𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , Φ𝑡 , Θ𝑡 , Ψ𝑡 
𝑇 ∈ 𝑅6

                                          (9) 

 

V. Experiment & Result 

 

First, we evaluate the improved SLAM method qualitatively. We use publicly available data Google to evaluate 

this method. The results are shown in figure 6. The left figure shows the effect of Cartographer, and the right figure 

shows the improved method. It can be seen that the effect of the map constructed by the improved method has been 

im- proved at the edge, with a lower degree of blur. 

 

 
(a) 

 
(b) 

Fig 6: Map built with (a)b1-2014-10-07-12-34-51 and (b)b2-2016-03-15-14-23-01 using Cartographer and the 

proposed method. 

 

figure 7 and figure 8 is the pose estimation gotten form ORB-SLAM. Correct pose estimation needs the data from 

other sensors. The tracking is correct, and it can detect the corner turning, but the estimation of the distance is 

inaccurate. 

 

 
Fig 7: ORB-SLAM Starting point. 
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Fig 8: Results of ORB-SLAM. 

 

VI. Conclusion 

 
A highway intelligent service robot system based on multi sensor fusion especially camera and lidar is designed 

and implemented in this paper. The experimental results show that the robot can meet the needs of the scene to a 

certain extent in aspects of map construction. The accuracy of the sensors will be improved in the future, and visual 

SLAM which includes more information allow the robot to adapt different environments and deal with more 

complex situations, but the accuracy of the visual SLAM needs to be enhanced in the future. 
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