
   CONVERTER MAGAZINE 
  Volume 2021, No. 5 

 
ISSN: 0010-8189 
© CONVERTER 2021 
www.converter-magazine.info 

419 

 

Short-Term Load Forecasting and Temperature Load Extraction Based on 

CEEMDAN and TDIC 
 

Min Wang, Peng Zhang
*
, Chao Wu, Zongyin Fan, Zixuan Yu, Yuan Chen 

College of Energy and Electrical Engineering, Hohai University, Nanjing, China 
*
Corresponding Author. 

 

Abstract 

 

With the intensification of urbanization in various countries worldwide, the temperature load which is greatly 

affected by ambient temperature, such as summer cooling loads and winter heating loads, accounts for a rising 

proportion of the total urban load. It causes an increasing peak-to-valley load difference. However, due to the 

complex composition and strong randomness of the load, it is necessary to study the multi-scale and multi-period 

correlation between temperature. Based on this, the complete ensemble empirical mode decomposition with 

adaptive noise (CEEMDAN) is used to decompose the temperature and load into multi-scale components. The 

time-dependent intrinsic correlation (TDIC) is proposed to analyze the local correlation between temperature and 

load in multiple periods under a multi-scale framework, and obtain the dynamic change characteristics of the 

correlation between temperature and load. Based on the TDIC analysis results, a suitable sample period for short-

term load forecasting (STLF) and input temperature data can be selected. Finally, extreme learning machine 

optimized by particle swarm optimization (PSO-ELM) is used to forecast each component of the load. The 

proposed STLF method is validated on real-time data from the Pennsylvania-New Jersey-Maryland (PJM) 

Company in the United States.  The proposed method has greatly reduced in both mean absolute percentage error 

(MAPE) and root mean square error (RMSE) compared with other traditional methods, and the temperature load 

that fluctuates with temperature in the day to be forecasted is extracted.  

 

Keywords: Complete ensemble empirical mode decomposition with adaptive noise, temperature load extraction, 

particle swarm optimization, extreme learning machine, short-term load forecasting. 

 

I. Introduction 
 

Accurate load forecasting is the key to promote power system planning and dispatching, reduce the power system 

operation costs, and ensure the orderly and efficient development of competitive power markets Error! Reference 

source not found., Error! Reference source not found.. Load forecasting can be divided into long-term load 

forecasting (LTLF), medium-term load forecasting (MTLF), short-term load forecasting (STLF), and very short-

term load forecasting (VSTLF) according to the time scale and different power generation and operation plans of 

the power system Error! Reference source not found.. 

 

At present, the commonly used load forecasting models can be divided into two types. One of which is the traditional 

forecasting models based on statistics, such as multiple linear regression (MLR), time series models [4], grey model 

(GM) [5], kalman filter (KF) [6], etc. However, traditional forecasting models are only suitable for processing linear 

data, and large errors are often generated when forecasting non-linear data. The traditional models largely depend on 

the stability of historical data. In STLF, the load has strong non-linear and volatility. Therefore, in recent years, the 

second type of load forecasting models based on artificial intelligence (AI) has become a research hotspot, such as 

artificial neural network (ANN) [7], fuzzy model [8], and support vector regression (SVR) [9]. ANN has been widely 

used in many fields with its good learning ability. However, some inherent shortcomings of traditional ANN, such as 

back propagation neural network (BPNN), has become the main bottleneck restricting their development. Huang et al. 

[10]proposed a new type of single-hidden layer feed-forward neural network (SLFNN) in 2006 and named it extreme 

learning machine (ELM). ELM randomly generates the weights between the input layer and the hidden layer and the 

threshold of the hidden layer neurons. Compared with the traditional ANN and SVR, it has the advantages of strong 

generalization ability and fast calculation speed [11]. However, randomly assigned input weights and hidden layer 

https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=101656471&ss_c=ssc.citiao.link


   CONVERTER MAGAZINE 
  Volume 2021, No. 5 

 
ISSN: 0010-8189 
© CONVERTER 2021 
www.converter-magazine.info 

420 

 

thresholds may affect the generalization performance of ELM. Therefore, Cai et al. [12] and Zeng et al. [13] utilized 

particle swarm optimization (PSO) to optimize the weights and biases of ELM network nodes, and compared PSO 

optimized ELM with other models like GM, SVR, ANN, and unoptimized ELM, and they concluded that PSO-ELM 

could effectively improve the accuracy of load forecasting. 

 

As the load variation is affected by external factors, we should pay more attention to the correlation characteristics 

between external factors and load characteristic statistical indicators [14]. With the development of the economy 

and the improvement of living standards, the temperature load that is greatly affected by ambient temperature, such 

as summer cooling loads and winter heating loads, account for a rising proportion of the total urban load, which 

leads to more obvious characteristics of the load variation with the temperature. In the analysis of traditional 

correlation relations, correlation coefficient method, mutual information method, and Copula function method are 

often used [15]. These methods can only analyze the static correlation between temperature and load, and can only 

get the total correlation within a certain period, such as a year, a month, and a week. Dynamic correlation like 

time-variation Copula proved to be an effective method to study the dynamic correlation that changes with time. 

However, the current dynamic correlation research methods only analyze the correlation between the original time 

series, ignoring that the difference in correlation may come from the components of different time scales within a 

time series. In recent years, global temperature changes have become increasingly complex, resulting in an 

increasing proportion of temperature loads in the load. At the same time, the load composition of an area is often 

very complicated, and not every type of load is affected by temperature, which makes it difficult to obtain 

satisfactory results only by improving a single load forecasting algorithm. Moreover, accurately extracting the 

temperature load has also become the key to load forecasting. 

 

 Therefore, many scholars propose to preprocess the load data series before load forecasting [16]. Recent studies 

have shown that a framework called “decomposition and ensemble” can improve the forecasting performance [17]. 

For example, in [18], they propose to decompose and denoise original load data by using Wavelet Transform 

(WT), and establish different forecasting models for different load components after the decomposition. However, 

the disadvantage of WT is that the basic function and time scale need to be given in advance according to 

experience, and the decomposition effect of non-linear time series is not good, so it is difficult to explore the 

potential characteristics and components of load fully. 

 

Empirical Mode Decomposition (EMD) is a new adaptive signal time-frequency processing method proposed by 

N. E. Huang in 1998 [19]. Compared with traditional signal processing methods, EMD has strong self-adaptability, 

completeness, and time-invariance. It is mainly used to process non-linear and non-stationary signal data, 

especially suitable for signals with strong randomness, high volatility, and low stability. In 2009, Huang proposed 

Ensemble Empirical Mode Decomposition (EEMD) [20] to solve the mode mixing phenomenon existing in EMD. 

At present, EMD and EEMD have been widely used in forecasting electricity prices [21], gas consumption [22], 

and new energy output [23]. In the field of STLF, M. R. Haq et al. [24] used EMD to decompose the load series 

into multiple low-frequency components and used T-Copula to analyze the upper tail correlation between the load 

and four types of meteorological variables to improve the load forecasting accuracy of peak load period. Q. Liu et 

al. [25] proposed a fuzzy weight combination theory from the perspective of data preprocessing to improve the 

accuracy of similar day selection, so as to reduce the original data to be processed by EMD. Then, KF-BA-SVM 

was used to forecast each load component after EMD decomposition. X. GAO et al. [26] used the Pearson 

coefficient to find IMF with high correlation with the original load series after the EMD decomposition of the load, 

and used it together with the original load series as the input of the forecasting model. D. Deng et al. [27] used 

EEMD to decompose the load, combined each mode into high-frequency and low-frequency parts according to 

IMFs frequency, and used different forecasting algorithms to forecast the two parts of the load. Most studies have 

used EMD and EEMD to decompose the load data series before load forecasting, and they have obtained better 

forecasting results. 

 

In recent years, some researchers have found that the EEMD method has problems with low decomposition 
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efficiency, and it is difficult to completely eliminate noise. Therefore, Torres et al. [28] proposed Complete 

Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) to solve these problems. At present, 

CEEMDAN has been gradually applied in the field of short-term load forecasting. Zhang et al. [29] proposed a 

combined load forecasting model based on CEEMDAN, quantum dragonfly algorithm (QDA), and SVR. Mohanad 

et al. [30], adopted an improved CEEMDAN based load forecasting model to reduce the non-linear and volatility 

of the load. By comparing with the deep learning (DL) algorithm, Li et al. [17] proved that CEEMDAN could 

improve the forecasting accuracy of the Multiple Kernel Extreme Learning Machine (MKELM) and reduce the 

training time of intelligent forecasting algorithm. Li et al. [31] and combined EMD, EEMD, and CEEMDAN with 

artificial intelligence forecasting algorithms. Through STLF and wind speed forecasting experiments, they both 

proved that CEEMDAN is better than EMD and EEMD in improving forecasting accuracy. The above studies 

prove that CEEMDAN has advantages in load decomposition and forecasting compared with EMD and EEMD. 

And compared to using the DL algorithms, such as deep belief networks (DBN) and long short-term memory 

(LSTM), SVR or ELM combined with CEEMDAN can achieve better performance. 

 

In conclusion, most studies have shown that decomposing the load before load forecasting could improve the 

accuracy of load forecasting and found that components with different frequency characteristics will appear after 

the load is decomposed. However, in the current STLF research, only the load data to be forecasted is decomposed, 

and the load components are only combined according to the frequency. The current research ignores the 

randomness and volatility of the influencing factors and ignores the local feature information of different time 

scales contained in influencing factors. Meanwhile, they only pursue the improvement of load forecasting accuracy 

and fail to accurately classify and extract components with different characteristics such as temperature load. 

Therefore, it is impossible to extract more implicit information from the data, and it is difficult to obtain more 

meaningful conclusions. In summer, the load is greatly affected by temperature, and the temperature fluctuates 

greatly, and the frequency is uncertain. Therefore, the decomposition of temperature is also essential.  

 

Because the load is composed of multiple scales, direct correlation analysis can produce unstable results. 

Simultaneously, the load tends to have dynamic changes in different periods. Therefore, it is inappropriate to use 

static correlation analysis to analyze the correlation between temperature and load.  Suppose a traditional sliding 

window-based dynamic correlation analysis method is used. In that case, because the sliding window size cannot 

be accurately determined, the local relevant information is difficult to obtain [15]. Chen et al. proposed a time-

dependent intrinsic correlation (TDIC) analysis method. The application of TDIC is based on EMD, which can 

adaptively adjust the size of the sliding window according to the instantaneous frequency of the time series [32]. 

TDIC method has been applied in many fields. Wang et al. [15] use CEEMDAN to decompose wind power and 

photovoltaics, then use TDIC to analyze the correlation between wind power and photovoltaics in different scales, 

and obtains the dynamic characteristics that vary with time. Through TDIC analysis, Huang et al. [33] obtained the 

inherent correlation between temperature and dissolved oxygen in the ocean at different frequency components, 

and concluded that there is a strong negative correlation in the components of the mean year in 3 years and 1 year. 

Peng et al. [34] used CEEMDAN and TDIC to analyze the multi-scale and time-varying correlations between 

crude oil and the US dollar in the short, medium, and long term. 

 

This paper proposes a research method of temperature load extraction and STLF based on CEEMDAN, TDIC, and 

PSO-ELM based on the complex change characteristics of load and temperature. The main contributions of this 

paper are as follows: 

 

Firstly, we propose to use CEEMDAN to decompose the temperature data and load data throughout the year, to 

reduce the nonlinearity of the data and separate the data with different time scale characteristics. 

 

Secondly, we propose to use the TDIC-based correlation analysis method to analyze the dynamic and local 

correlation between temperature and load under different time scales. At the same time, the TDIC method can also 

determine the required sample data period in the STLF model, because too much data used for forecasting model 
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training will result in the addition of useless factors, and too little will result in insufficient model training. After 

that, CEEMDAN is used again to decompose the temperature and load data in the sample period and analyze the 

local characteristics of temperature and load. The components in the temperature load that fluctuates with 

temperature in the day be forecasted can be determined. 

 

Finally, we use the PSO-ELM model to forecast each load component. And according to the TDIC analysis results, 

for some load IMFs, the temperature IMFs with the highest correlation are used as the model input temperature. 

The case study proves that the forecasting method based on CEEMDAN decomposition, TDIC correlation 

analysis, and PSO-ELM proposed in this paper can effectively improve load forecasting accuracy and extract the 

temperature load. 

 

This paper is organized as follows. Section II presents the model of CEEMDAN and TDIC. Section III presents the 

model of forecasting algorithms based on PSO and ELM. In section IV, the load and temperature are decomposed 

by CEEMDAN, and the multi-scale dynamic correlation between temperature and load is analyzed by TDIC. 

Section V gives the temperature load extraction results, load forecasting results and corresponding analysis. The 

conclusion is in section VI. 

 

II. Load Decomposition and Characteristic Analysis Model 
 

2.1 Basic principles of EMD 

 
EMD can decompose the signal into multiple intrinsic mode functions (IMFs) and a residual function. The criteria 

to generate IMFs are as follows [35]: (i) in the whole data time series, the maximum difference between the 

number of extremum points and the number of zero points is 1; (ii) At any point, the mean of the maximum 

envelope and the minimum envelope is equal to 0. The specific steps of decomposing the signal time series with 

EMD are as follows: 

 

Step 1: Determine the local maximum point and the local minimum point of the original signal series ( )x t . 

Step 2: Connect all local maxima and local minima to form an upper envelope and a lower envelope, and then 

calculate the average envelope 1m . 

Step 3: Determine whether the 1 1( )= ( )h t x t m  meets the IMF criteria. If the criteria are met, then 1 1( ) ( )c t h t  

is the first IMF; If the criteria are not met, then 1h  is regarded as the new original series, and the above steps are 

repeated k  times to make 1 ( )kh t  meet the criteria of IMF. 1 1( ) ( )kc t h t  is denoted as the first IMF of the 

original signal series. 

Step 4: The first IMF is separated from the original series, and the remainder 1( )r t  is treated as the original series. 

Step 5: Repeat steps 1-4 to get n  IMFs. When the residual term ( )nr t  satisfies the termination condition and 

cannot extract any IMF, the decomposition process ends. 

 

Finally, the signal series can be expressed as the sum of the IMFs and the final residual function, i.e., 

1

( ) ( ) ( )
N

j n

j

x t c t r t


                                                          (1) 

2.2 CEEMDAN 

 

EEMD solves the mode mixing problem of EMD by adding Gaussian white noise and averaging it. However, due 

to the large white noise residual, the number of sieving increases, and the decomposition may fail, so the 

calculation efficiency is not high. Given the above problems, Torres et al. [28] proposed the CEEMDAN method, 

which adds adaptive white noise to the original signal based on EEMD, to overcome the shortcomings of EMD and 
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EEMD. The detailed steps are as follows: 

Step 1: Suppose that the reconstructed signal after adding white noise to the original signal is represented as 

0( ) ( )x i x n i  , where 0  is the signal-to-noise ratio of the noise relative to the original signal, ( )n i  

( 1,2,...,i L ) is the Gaussian white noise, i  is the number of times that carries out EMD decomposition. ( )jE   

( 1,2,...,j N ) is defined as the process of obtaining the j  IMF through EMD decomposition, then the first 

IMF expression is: 

1 1 1

1 1

1 1
( ( )) ( )

L L

i i

c E x i c i
L L 

                                                       (2) 

The residual function is expressed as: 

1 1r x c                                                                                (3) 

Step 2: When calculating the second IMF, the signal to be decomposed is 1 1 1( ( ))r E n i , then the second IMF 

is: 

2 1 1 1 1

1

1
( ( ( )))

L

i

c E r E n i
L




                                                         (4) 

The residual function is expressed as: 

2 1 2= -r r c                                                                          (5) 

Step 3: Repeat step 2 to find out the number 1j   IMF is: 

1 1

1

1
( ( ( )))

L

j j j j

i

c E r E n i
L





                                                       (6) 

Then the original signal series can be expressed as the sum of the IMFs and the final residual function, i.e.: 

1

N

j

j

x c r


                                                                                (7) 

2.3 TDIC 

 

The TDIC method is used to analyze the correlation of non-linear data in different time scales, and adjust the time 

window through adaptive criteria. Based on the decomposition of the CEEMDAN method, the TDIC calculation steps 

are as follows: 

 

Step 1: Use CEEMDAN to decompose two time series 1( )x t and 2 ( )x t into the same number of IMF: 

1

( ) ( ) ( ), 1,2
N

p pj p

j

x t c t r t p


                                                      (8) 

where the ( )pjc t is j th IMF of ( )px t  and ( )pr t  is the residual function. 

Step 2: Use the HHT method to find the instantaneous period ( )pjT t  of ( )pjc t . The sliding window centered at any 

time kt  is expressed as: 

[ / 2, / 2]n

w k d k dt t nT t nT= - +                                                          (9) 

where n is any positive real number [32] , and normally n is selected as 1. The smallest sliding window suitable for 

calculation is 1 2max( ( ), ( ))d j k j kT T t T t= . The sliding window is chosen in this way to ensure that at least one 

complete cycle is included in the correlation calculation of the two time series. 

Step 3: The TDIC correlation of each IMF pair is defined as follows: 

1 2( ) ( ( ), ( ))n n n

j k j w j wR t Corr c t c t=                                                      (10) 

where Corr represents the overall correlation coefficient of two time series. 
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III. Load Forecasting Model 
 

3.1 ELM 

 

The ELM model structure includes an input layer, a hidden layer, and an output layer. The algorithm randomly 

generates the connection weight between the input layer and the hidden layer and the threshold value of the hidden 

layer neurons, and there is no need to adjust during the training process. By solving the generalized inverse matrix, the 

output weight matrix is obtained, and we can complete the training. The principle is as follows: 

 

Suppose there are N training samples, which is  ,i ix t  (among them, the input sample 

is  1 2, , ,
T

i i i inx x x x  and the output sample is  1 2, , ,
T

i i i imt t t t  ), there are L neurons in the hidden layer, 

and the excitation function is  g x . The output of the model is:  

 

 

 

 

1

1
1

2 2

1

1

1,2, ,

L

i i j i

i
j

L

j i i j i

ij

mj L

im i j i

i

g w x b

o

o g w x b
o j N

o

g w x b













 
 

   
   

     
   
   
    

 
  












                           (11) 

Among them,  1 2, , ,i i i inw w w w  represents the connection weight between the i th neuron in the hidden layer 

and each input layer neuron,  i 1 2, , ,i i im     represents the connection weight between the i th neuron in 

the hidden layer and each output layer neuron, and ib represents the threshold of i th neuron. 

 

To minimize the output error of the model, it needs to meet: 

1

0
N

j j
j

o t
=

- =å                                                                    (12) 

Then, the formula (11) can transfer to the formula (13). 

H T                                                                            (13) 

( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 1

1 2 1 2

1 1 1

1 1

, , , , , , , ,

L L

L L

L L N

N L N L N L

g w x b g w x b

g w x b g w x b
H w w b b x x

g w x b g w x b




  




´

é ù× + × +
ê ú
ê ú× + × +ê ú= ê ú
ê ú
ê ú× + × +ê úë û

                          (14) 

11
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t

t
and T

t










´ ´

é ùé ù
ê úê ú
ê úê ú
ê úê ú= =
ê úê ú
ê úê ú
ê úê ú

ë û ë û

                                           (15) 

Therefore, the training process of the entire neural network is equivalent to finding the least squares solution of the 

linear system H T = . 
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' 'minH T H T


 
Ù

- = -                                                  (16) 

'H T
Ù

+=                                                              (17) 

where, H +
is the Moore–Penrose generalized inverse of the hidden layer output matrix H [12]. 

 

3.2 PSO 

 

To improve ELM forecasting accuracy, PSO is proposed to optimize the input weights and hidden layer thresholds in 

ELM. The optimal parameters are selected by iterative calculation of optimal fitness value in multi-dimensional 

space. The optimal fitness value here is the minimum value of two error indicators shown in the next subsection. 

 

The particle position update formula of PSO is: 

1 1 2 2( ) ( )d d d d d d

i i i i g iv v c r p x c r p x                      (18) 

d d d

i i ix x v                               (19) 

where,   is the inertia factor, 1c  and 2c  are acceleration constants, 1r  and 2r  are random numbers changing within 

[0,1]. 
d

iv  
d

ix , 
d

ip , and 
d

gp  are respectively the velocity, position, optimal individual position, and optimal swarm 

position of the i th particle in the d  dimension.   is the constraint factor used to control the weight of velocity. 

 

3.3 Forecasting Error Evaluation Indicator 

 

To evaluate the accuracy of the forecasting models, two error evaluation indicators, namely mean absolute percentage 

error (MAPE) and root mean square error (RMSE) [24] is selected, with the following formula: 

1

ˆ1
100%

n
i i

i i

y y
MAPE

n y


                           (20) 

2

1

1
ˆ( )

n

i i

i

RMSE y y
n 

                             (21) 

where, n  is the number of simulated points, iy is the true value of the i th simulation point, ˆ
iy  is the simulation 

value of the i th simulation point. 

 

IV. Load Decomposition and Correction Analysis Case Based on CEEMDAN and TDIC 
 

All the calculation and simulation in this paper are implemented by MATLAB R2020b. The computer used in this 

work has an Intel Core i5-8265U processor, CPU @ maximum 4.9 GHz.  The hourly temperature and hourly load 

data used in this paper are from the PEPCO area of Pennsylvania-New Jersey-Maryland (PJM) Company in the 

United States [36, 37]. 

 

4.1 Decomposition case of CEEMDAN 

https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=101656471&ss_c=ssc.citiao.link


   CONVERTER MAGAZINE 
  Volume 2021, No. 5 

 
ISSN: 0010-8189 
© CONVERTER 2021 
www.converter-magazine.info 

426 

 

 
Fig 1: Annual temperature and load data. 

 

 
(a) Temperature. 

 
(b) Load. 

Fig 2. Annual temperature (a) and load (b) decomposition results using CEEMDAN.  

 

4.2 TDIC analysis 

 

Here, we first calculate the average cycles of each component after decomposition of temperature and load, and the 

results are shown in Table 1. 

 

Table 1 Average cycles of temperature and load components. 

 
Average cycles (hour) 

Temperature Load 

IMF1 3.37 3.17 

IMF2 6.47 5.31 

IMF3 14.61 12.42 

IMF4 26.22 23.95 

IMF5 45.69 46.39 

IMF6 105.96 93.52 

IMF7 197.95 201.44 

IMF8 377.34 414.85 

IMF9 792.90 792.90 

IMF10 2488.57 5607.33 

IMF11 5756 8077 

Residual    
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It can be seen from Table 1 that in the temperature and load data pairings of different time scales, except for 

IMF10, IMF11, and the residual, the average cycles of the rest of the IMFs are relatively close. This shows that 

temperature and load may have some correlation characteristics in these time scales. The cycles of IMF1-3 are all 

within one day, the cycle of IMF4 is about one day, the cycles of IMF5 and IMF6 are within one week, the cycles 

of IMF7 and IMF8 are about one week and two weeks, and the cycle of IMF9 is about one month. 

Based on this, we use TDIC to analyze the dynamic correlation between temperature and load of IMF1 to IMF9, 

and the results are shown in Figure 3. Because the average cycles of temperature and load of IMF10, IMF11, and 

the residual are too large, TDIC analysis has no statistical significance. 

 

 
(a)IMF1 

 
(b)IMF2 

 
(c)IMF3 

 
(d)IMF4 

 
(e)IMF5 

 
(f)IMF6 

 
(g)IMF7 

 
(h)IMF8 

 
(i)IMF9 

Fig 3: TDIC plots between temperature and load of each IMFs.  

 

In every plot of Figure 3, the horizontal axis represents the time of the signal and corresponds to the center position 

of the sliding window. The vertical axis represents the size of the sliding window. When the boundary of the 

sliding window exceeds the left or right end of the time domain, the TDIC correlation will not be calculated Error! 

Reference source not found.. Therefore, the TDIC plot is triangular. The sliding window size corresponding to 

the vertice of a plot is the entire time domain, and its value is the overall correlation coefficient of the two time 

series. The yellow part in the plot represents a positive correlation, and the blue part represents a negative 

correlation. The strength of the correlation can be seen by the color depth.  

 

The TDIC plots in Figure 3 clearly shows the dynamic correlation between temperature and load time series on 

different time scales and different time windows. In terms of IMF1 and IMF2, there is no strong positive or 

negative correlation in any period within a year. This is because the frequency of these two components is 
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relatively high, the fluctuations are relatively severe, and they are greatly affected by random factors. The 

correlation of IMF4 is not obvious in the summer period, but shows a positive correlation in the spring and 

autumn, and shows a trend of positive correlation as the time window enlarging. IMF9 only shows a positive 

correlation in autumn and a negative correlation in winter. The rest of the IMFs are positively correlated in the 

summer-centered period, and have a negative correlation in the winter-centered period, and the correlation is 

strong, which shows strong seasonal characteristics. Besides, most intermediate frequency IMFs exhibit a dynamic 

alternate variation between positive and negative correlation in a short time window, showing strong dynamic 

characteristics. 

 

It can be seen that in a period of one month or less, the correlation between temperature and load will show a trend 

of dynamic variation, and the correlation between temperature and load components of different scales is quite 

different. 

 

4.3 Summer sample data selection and analysis 

 

According to the analysis in section IV-B, temperature and load have a strong correlation in multiple time scales in 

summer. At the same time, summer is also the season with the highest load of the year. Since this paper will 

perform STLF during the summer high-temperature period in the next section, we will select the training sample 

data used by the forecasting model. The temperature and load data period used for the forecasting model should be 

selected to ensure that they have a strong correlation in more time scales, and there is not much correlation 

fluctuation in the period. Therefore, we choose the hourly temperature and hourly load data in the PEPCO area of 

Pennsylvania-New Jersey-Maryland (PJM) Company in the United States from 01:00 25 June 2019, to 24:00 22 

August 2019, as the forecasting sample. This period is just in the green triangle area of the TDIC plot of IMF4 in 

Figure 3 and outside the yellow area of the TDIC plot of IMF9. It is also in the yellow triangle area of the more 

components. So this period can be used for better forecasting research. At the same time, this period is also the 

period when the highest load peak occurs in the year, and the load is greatly affected by temperature. 

 

Because the reduction of the data scale used for decomposition will inevitably affect the number of extreme points 

of the data, and then affect the result of CEEMDAN decomposition, we re-decompose the temperature and load 

data in the forecasting sample period by CEEMDAN. The result is shown in Figure 4. Figure 4 shows that 

temperature and load are divided into 8 IMFs and a residual function, respectively. 

 

 

(a) Temperature 

 

(b) Load 

Fig 4: TDIC plots between temperature and load of each IMFs. 

 

Figure 5 shows the TDIC plots of eight IMFs corresponding to temperature and load. It can be clearly seen that the 

TDIC plots of IMF3, IMF7, and IMF8 are all yellow, and the correlation is higher than 0.8 throughout the triangle, 

indicating that the three load components are highly correlated with temperature throughout the sample period. The 

TDIC plots of IMF1 and IMF2 are basically green, indicating that these two load components have basically no 

https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=101656471&ss_c=ssc.citiao.link
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relationship with temperature during the summer period, and their changing laws should be affected by other 

internal and external factors. When the sliding window of the TDIC plot of IMF4 is about 100 hours, the 

correlation presents a phenomenon of alternating positive and negative. The overall correlation of IMF5 is not 

high, but it shows a trend of increasing correlation in the later period of the sample period. On the contrary, the 

correlation of IMF6 showed a negative correlation trend in the later period. Therefore, the correlation between the 

eight IMFs of load and the IMFs of temperature is not the same. Among them, IMF3, IMF7, and IMF8 belong to 

the temperature load component during the entire sample period, while IMF4, IMF5, and IMF6 belong to the 

temperature load in certain specific periods.  

 

 
(a)IMF1 

 
(b)IMF2 

 
(c)IMF3 

 
(d)IMF4 

 
(e)IMF5 

 
(f)IMF6 

 
(g)IMF7 

 
(h)IMF8 

 

Fig 5: TDIC plots between temperature and load of each IMFs. 

 

The significance of the analysis in Section 4 is that by decomposing the temperature and load based on 

CEEMDAN, and performing a correlation analysis based on TDIC for each corresponding IMF, it can be found 

that IMFs of different scales of load are affected by temperature differently. At the same time, the same IMF is 

affected differently by the temperature at different times. Therefore, the temperature load can be accurately 

extracted in a specific period. 

 

It should be noted here that the temperature load extracted by the method proposed in this paper is only a 

fluctuation component, not the actual summer cooling load or winter heating load. This is because the residual of 

the load is constant or changes slowly in a certain period, and cannot be analyzed by TDIC, but it also includes 

constant cooling or heating loads. However, the constant load will not affect the accuracy of STLF in the next 

section. 
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V. Load Forecasting Case Study 
 

5.1 Forecasting flow 

 

Based on the analysis and calculation results in Section IV, this paper uses PSO-ELM to forecast each load 

component after CEEMDAN decomposition. The specific flow chart is shown in Figure 6. 

 
 

Fig 6: Flow chart of load forecasting method proposed in this paper. 

 

5.2 Case study 

 

The case study is to verify the advantages of the CEEMDAN-based decomposition and TDIC-based correlation 

analysis of each IMF of temperature and load proposed in this paper in STLF and temperature load extraction. We use 

the data from 01:00, 25 June 2019, to 24:00, 22 August 2019 in section IV-C as the training data in the forecasting 

model, to forecast the load from 01:00, 23 August 2019, to 24:00, 23 August 2019.  

 

This paper is aimed at future 24-hours STLF. Assuming that the day to be forecasted is t , the output of the 

forecasting model is the load data of the day to be forecasted for 24 hours, namely ( ,1)L t to ( ,24)L t . The input 

data of the model includes the load and temperature data of the previous day, that is ( -1,1)L t to ( -1,24)L t and 

( -1,1)T t to ( -1,24)T t , and the temperature data of the day to be forecasted, that is ( ,1)T t to ( ,24)T t . In the 

selection of load forecasting factors, in addition to considering the impact of temperature and historical load on the 

current load, the impact of day types and holidays are also added [16]. So the input data also includes the input day 

types ( )DT t (Monday = 1, Tuesday = 2, and so on) and the input type holiday ( )HD t  (Holidays = 1, otherwise 

0). Therefore, there are 74 input nodes and 24 outputs nodes in the PSO-ELM model. In the selection of model 

parameters, for PSO, we set 1=2.8c and 2 =1.3c , and the population number and the maximum iteration number 

are 50. For ELM, the number of hidden neurons is 50, and we use the sigmoid function as the activation function. 

 

5.2.1 Temperature load forecasting 
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Since the load IMF3, IMF7, and IMF8 are highly correlated with the corresponding temperature IMFs in the 

forecasting sample period, it can be considered that these three IMFs belong to the temperature load of the day to be 

forecasted. At the same time, starting from the 1070th hour, IMF5 has a positive correlation with IMF5 of temperature 

higher than 0.8. It can be considered that IMF5 also a temperature load component of the day to be forecasted. 

Therefore, the temperature load of the day to be forecasted is a combination of IMF3, IMF5, IMF7, and IMF8. 

 

Taking load IMF3 as an example, when forecasting it, we choose IMF3 of temperature as the input temperature 

data of the model. The forecasting results and error analysis table are shown in Figure 7 and Table 2, respectively. 

As shown in the legend of Figure 7, the meaning of “(1)” means that the input temperature data uses the original 

temperature, and “(2)” means that the input temperature data uses the IMF3 of temperature decomposed by 

CEEMDAN. 

 
Fig 7: Forecasting results of load IMF3. 

 

Table 2 Error analysis table of load IMF3. 

Method MAPE (%) RMSE (MW) 

PSO-ELM (1) 19.63 4.82 

PSO-ELM (2) 43.3 13.98 

 
As seen in Figure 7 and Table 2, PSO-ELM have better forecasting results when the input temperature data is the 

IMF3 of temperature, and the errors are reduced. Therefore, we use IMF3, IMF7, and IMF8 of temperature as the 

PSO-ELM input temperature data to forecast the IMF3, IMF7, and IMF8 of the load. Since the overall correlation 

between IMF5 of load and IMF5 of temperature during the sample period is less than 0.6, we still choose to use the 

original temperature as the input temperature data for its forecasting. Based on this, we can forecast the temperature 

load on the day to be forecasted, and the result is shown in Figure 8. It can be concluded that in a day, due to the 

influence of temperature, the load fluctuation reaches close to 400MW. 
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Fig 8: Forecasting results of temperature load. 

 

The significance of the temperature load forecasting is that, based on the temperature forecasting data of the next day, 

the temperature load that fluctuates with temperature can be forecasted. At the same time, the amount of fluctuation in 

load affected by temperature can be quantified. This is conducive to grid managers to formulate power dispatch 

strategies and determine the reserve generation capacity based on temperature changes. 

 

5.2.2 Total load forecasting 

In summary, the forecasting method of this paper is divided into two steps. First, the temperature and load are 

decomposed by CEEMDAN, and TDIC is used to analyze the correlation between temperature and load at different 

scales. Secondly, for the selected IMF3, IMF7, and IMF8 of load, the corresponding IMFs of temperature are used as 

the forecasting input, and the original temperature is used as the forecasting input for the other IMFs and the residual, 

then the PSO-ELM is used to forecast each component of the load. 

 

To verify the superiority of the load forecasting method proposed in this paper, five methods, including ARIMA, 

ELM, and LSTM, is used to do the future 24-hours STLF of the same sample data to make a comparison with the 

method proposed in this paper. The five methods are as follows: 

 

 ARIMA: Use ARIMA to forecast the original load. 

 ELM: Use ELM to forecast the original load. 

 PSO-ELM: Use PSO-ELM to forecast the original load. 

 LSTM: Use LSTM to forecast the original load (The LSTM model contains an input layer, two LSTM layers, 

a fully connected layer, and an output layer. The number of neurons of each LSTM layer is 50. The learning rate is 

0.01, and the number of iterations is 100. We use the sigmoid function as the activation function). 

 CEEMDAN-PSO-ELM: Decompose the original load using CEEMDAN and combine each component into 

three parts according to the frequency, namely high-frequency part, intermediate-frequency part, and low-frequency 

part. Then use PSO-ELM to forecast each part of the load. 

 

The forecasting results are shown in Figure 9: 
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Fig 9: Forecasting results of the total load. 

 

As seen in Figure 9, when ARIMA, ELM, and LSTM are used to forecast the original load, the forecasting 

accuracy drops sharply after the 17th and 18th hours, while the forecasting results of the other three methods are 

close to the actual value. For further comparison, Table 3 presents two specific error indicators of the six 

forecasting methods. 

 

Table 3 Error analysis table of total load forecasting results. 

Method MAPE (%) RMSE (MW) 

ARIMA 3.43 156.47 

ELM 2.48 135.68 

PSO-ELM 1.65 79.77 

LSTM 1.94 115.24 

CEEMDAN-PSO-ELM 1.47 78.76 

Propose 0.51 23.28 

 

In Table 3, by comparing the forecasting results of ELM and PSO-ELM, it can be concluded that the forecasting 

performance of PSO-ELM is better, which benefits from the adjustment and optimization of ELM model parameters 

by PSO. By comparing the first four methods, PSO-ELM has the smallest forecasting error than other methods. It 

shows that without decomposing load and temperature, PSO-ELM has the highest forecasting accuracy. Because the 

influence of external factors on the load is not considered, the ARIMA model will produce large errors, and it is not 

suitable for processing more non-linear data. The reason for the large LSTM forecasting error is that the forecasting 

accuracy of the LSTM model depends on the selection of internal threshold, weight, the number of neurons, and the 

number of LSTM layers. Compared with PSO-ELM, LSTM needs to determine and optimize more unknown 

parameters. Therefore, an improper selection will lead to an error increase. For the case of this paper, LSTM does not 

perform well. The MAPE and RMSE of CEEMDAN-PSO-ELM are slightly reduced compared to PSO-ELM. This is 

because the load is decomposed and then recombined, which is beneficial to separate the linear and non-linear parts of 

the load, but the forecasting performance is not apparent.  

 

The method proposed in this paper uses TDIC to carry out correlation analysis after CEEMDAN decomposition of 

temperature and load, mining the multi-scale and multi-period correlation of temperature and load. And in load 

forecasting, for different load components, we use the original temperature data or the corresponding temperature 

component data as the forecasting input temperature data. Therefore, it performs best in STLF. Compared with 

CEEMDAN-PSO-ELM method which has no TDIC-based temperature and load correlation analysis and input 

temperature data selection, the MAPE of the proposed method is reduced by 65%, and the RMSE is reduced by 

70%. 
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VI. Conclusion  
 

This paper proposes a method of temperature load extraction and short-term load forecasting based on CEEMDAN 

and TDIC. First, temperature and load data are decomposed by CEEMDAN. Second, TDIC is proposed to analyze the 

multi-scale and multi-period dynamic correlation of temperature and load within a year and summer. Finally, PSO-

ELM model is selected to forecast the different components of the load. Through the analysis and calculation of 

temperature and load data in the PEPCO area of PJM Company in the United States, the results show four aspects: (1) 

Through CEEMDAN-based decomposition, temperature and load data can be decomposed into multiple time scale 

components. (2) Through the correlation analysis based on TDIC, it can be found that the correlation between 

temperature and load at different scales in a year is different. Specifically, in the high-frequency components, 

temperature and load have a poor correlation. In the intermediate-frequency components, multiple IMFs exhibit a 

strong positive correlation in summer and a strong negative correlation in winter, and it shows dynamic change 

characteristics of positive and negative correlations in short time window. In the low-frequency components, the 

correlation between temperature and load is relatively stable. (3) After redecomposing the sample data used for 

forecasting model training before the forecast day and analyzing the correlation, multiple load IMFs exhibit a strong 

correlation with the corresponding temperature IMFs higher than 0.8 during the full sample period. Based on this 

result, selecting the corresponding temperature IMFs as the input of the forecasting model can improve the accuracy 

of load forecasting. At the same time, some load IMFs have a high correlation with the temperature only in local 

periods, so the composition of the temperature load on the day to be forecasted can be accurately extracted through 

TDIC analysis. (4) The STLF method based on CEEMDAN, TDIC, PSO-ELM proposed in this paper can greatly 

reduce the error of load forecasting and has good forecasting performance.  

 

Because a part of the temperature load remains constant throughout the day under high or low-temperature 

conditions, the temperature load extracted in this paper is only a fluctuating part of the actual grid temperature 

load. Our work on temperature load extraction helps grid managers obtain the amount of fluctuation in the load 

affected by temperature during a day, and the quantitative relationship between temperature fluctuation and load 

fluctuation. It provides more accurate multi-time-scale load decomposition data for the formulation of power grid 

multi-scale operation plan and the optimization of real-time dispatch under random weather conditions. So the 

study in this paper has important engineering application value. 
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