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Abstract 

 
The Improved Bat Algorithm   (IBA) is proposed for the image segmentation based on the maximum interclass 

variance method. Firstly, the principle of image segmentation based on the maximum interclass variance method is 

explained, and secondly, the bat algorithm is improved by using chaotic logistic mapping to initialize the 

population to improve the diversity of solutions, using adaptive parameter optimization to avoid falling into local 

optimum, using Monkey algorithm for individual selection, and finally, the image segmentation function in image 

segmentation is used as the individual fitness function of the bat algorithm for solving. The simulation experiments 

show that compared with the bat algorithm and the monkey group algorithm, this algorithm has better 

segmentation effect under different threshold values. 
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I. Introduction  

 

Among all kinds of information in the Internet era, image information is the information that we have the most contact with, it 

has the advantages of intuitive, easy to understand, and large amount of information and is widely accepted by people. 

However, not all information is needed by people, in most cases, people are usually only interested in a certain region or some 

regions of the image, so image segmentation was born in such a context, image segmentation [1] is a technique to separate 

specific regions from other regions, which directly affects the problem of feature extraction and target recognition. Scholars at 

home and abroad have studied image segmentation to different degrees. Literature [2] used Improved Moth-Flame Optimization 

Algorithm to optimize the Otsu algorithm for threshold segmentation of infrared images before fault diagnosis, and the results 

showed that the method was able to determine the temperature range of each part; Literature [3] used Symbiotic Organisms 

Search The results show that the algorithm can obtain accurate segmentation thresholds; Literature [4] proposed a dragonfly 

algorithm based on chaotic initialization and backward learning strategy applied to multi-threshold color image segmentation, 

and the experimental results show that the algorithm ensures the stability while the accuracy of image segmentation is 

effectively improved; Literature [5] proposed a multi-objective particle swarm and artificial The experimental results show that 

the algorithm can achieve the ideal segmentation results; Literature [6] proposed to use the improved bat algorithm (BA) to 

search for the optimal solution of the threshold, and applied the improved bat algorithm to the minimum cross-entropy multi-

threshold image segmentation, and the experimental results show that the algorithm in the speed and segmentation accuracy 

effect is significantly improved; Literature [7] proposed a new Drosophila optimization algorithm and optimized the image 

segmentation thresholds. The experiments show that the improved algorithm achieves better results than other algorithms in the 

application of image segmentation. 

 

From the above study, it is found that the image segmentation using bionic algorithm has achieved better results. In 

view of the above results, this paper adopts the improved bat algorithm for image segmentation processing. Firstly, 

the definition of image segmentation by the maximum interclass variance method is explained, then the 

performance improvement measures of the bat algorithm are proposed, and the experiments show that the 

improved bat algorithm achieves better results in image segmentation. 

 

 

 



         CONVERTER MAGAZINE 
  Volume 2021, No. 5 

 
ISSN: 0010-8189 

© CONVERTER 2021 

www.converter-magazine.info 

739 

 

II. Image Segmentation Based on the Maximum Inter-Class Variance Method 

 

Image segmentation is the process of dividing an image into several different regions, where the similarity of color, 

shape and information of the images in the same region is relatively high and the similarity between different 

regions is very low. Considering an image as a set R , each region of the segmentation is a non-empty subset 

1 2 , nR R R  , and these subsets satisfy the following conditions. Condition 1: 1

n

i iR R  , means that the sum 

of pixels in n  subregions contains all pixels of the original image and all pixels in the same subregion are 

connected; Condition 2: for all i  and j , when i j , i jR R  , means that no pixel in the image can belong 

to different subregions at the same time; Condition 3: for 1,2i n  , ( )iP R True , means that the pixel 

values in the same subregion have high similarity in some condition 4: for i j  ,
 

( )i jP R R False  means 

that the pixels in different sub-regions should have different features in some aspect. 

 

The maximum interclass variance method is a simple and efficient single threshold segmentation algorithm 

proposed by Otsu [8], a Japanese scholar, in 1979. The principle is that since the grayscale values of the same 

region are of the same size or close to each other, and the grayscale values of different regions are more obviously 

different, the larger the variance of each region is, the greater the difference between them, so it can be regarded as 

different classes to divide the image into several parts. Specifically, there are m  thresholds 1 2, mt t t  to divide 

the gray space {0,1,2, 1}L  into 0 1 2, , mk k k k  regions. Let there be in  pixels in the image with gray 

value i , the total number of pixels is N , the frequency of pixels is ip , and i  is the image gray value, expressed 

as follows. 
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Where i  is defined as follows: 
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Then the optimal threshold is the maximum interclass variance when t  is expressed as follows. 

 
* * *

1 2( , , ) arg max ( )mt t t f t                                                             (5) 

 

Ⅲ. Bat Algorithm 

 

In 2010, Yang developed a new meta-heuristic algorithm, Bat Algorithm (BA) [9], by imitating the echolocation 

function of bats in nature. The principle of this algorithm is to treat individual bats as solutions in the search space, 

and rely on the loudness and pulse rate of individual bats to search for food through continuous iterations to obtain 

the optimal solution. The principle of the BA algorithm is as follows: set the N -dimensional search space, the 

frequency range of the bat is 
min max[ , ]f f , the corresponding wavelength range is 

min max[ , ]  , the bat loudness is 

A , the pulse frequency is r , and the position 
t

il  and velocity 
t

iv  of the i the bat at the moment of t  are updated 

as follows. 

 

min max min( )if f f f                                                              (6) 

1 *( )t t t

i i i iv v x x f                                                                     (7) 

1t t t

i i il l v                                                                                (8) 

 

In the above equation, if  denotes the bat frequency, [0,1]   is a random variable subject to uniform 

distribution, and *x  denotes the optimal position after each iteration. During the operation of the algorithm, but the 

individual bats perform local search, the algorithm will generate an optimal solution from the current local search, 

so that each bat will get a new position at random, and its expression is shown in   (9). 

 

t

new oldl l A                                                                              (9) 

 

In formula   (9), the value of   is between [-1, 1], and tA  represents the average loudness of all bats at time t . 

The bat's speed and position are constantly updated as the iterations continue. Once the prey is found, the loudness 

decreases and the pulse frequency increases. 

 
1t t

i iA A                                                                                (10) 

1 0 [1 exp( )]t

i ir r t                                                                    (11) 

 

Ⅳ. Image Segmentation Based on Improved Bat Algorithm 

 

Like other meta-heuristic algorithms, the bat algorithm also has the problem of easily falling into local optimality 

and insufficient global search ability. Therefore, in order to be better used in image segmentation, this article uses 

population initialization, adaptive parameters and individual screening. Aspects are optimized. 

 

4.1 Population initialization 

 

In order to obtain the optimal solution, the population needs to be evenly distributed in the search space. 

Initializing the algorithm through a chaotic algorithm also has better solution diversity. The idea is to rely on the 

mapping relationship to generate a chaotic sequence in the interval [0,1], and then correspond to the individual 
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search space. This paper uses the chaotic sequence generated by the Logistics map to initialize the bat algorithm 

population. The mathematical expression of Logistics mapping is: 

 

1 (1 ) 0.5i i i i

j j j jy y y y                                                             (12) 

 

In the formula, [0,4]  is a chaotic parameter, and its value is related to the quality of the chaotic effect. The 

larger the value, the better the chaotic effect, and vice versa, the worse the effect. In this paper, the maximum value 

of   is selected, and 1,2,3i   and N  represent the population size; 1,2,j  , d  represents the sequence 

number of the chaotic variable 

 

4.2 Adaptive parameter optimization 

 

The adaptive parameter   is a fixed value. Obviously, it cannot adapt to the transformation of the algorithm 

during operation. The step size becomes larger, which is conducive to improving the algorithm's global exploration 

ability, and the step size becomes smaller, which is conducive to the local development ability of the algorithm and 

improves the search capability. Therefore, this paper uses exponential decline factor instead of adaptive 

parameters, which improves the accuracy of the algorithm and makes the step size adaptive. The specific update 

formula is shown in (13): 
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In the formula, t  is the current iteration number, G  is the overall iteration number, and max  and min  represent 

the maximum and minimum values of factor  , respectively. 

 

4.3 Global optimization 

 

The bat algorithm does not perform individual screening after each iteration, resulting in a lot of redundant 

individuals. These redundant individuals participate in the next iteration process, which will seriously affect the 

quality of the solution and cannot effectively produce the optimal solution. The advantage of the Monkey 

algorithm is that it has a better global search capability. Therefore, in this paper, monkey swarm algorithm is used 

for individual selection in the algorithm after each iteration, and the monkey swarm algorithm has better individual 

selection ability to select whale individuals, and retains better population individuals for the next iteration. 

 

   (1) Crawling process 

The process of finding the objective function value of the optimization problem by each monkey by crawling in the 

current range continuously through the process of crawling step by step is as follows. 

 

Step 1: Randomly generate vectors 1 2( , , , )i i i inX x x x      and 1,2,i M  . Component ijx  takes a  

with equal probability, where 1,2 , , ( 0)j n a a   is the step length of the monkeys each time they climb. 

 

Step 2: Calculate 

' ( ) ( )
( )

2

i i i i
ij i

ij

f X X f X X
f X

x

  


 , where 1,2 , , ( 0)j n a a   and vector 
' ' ' '

1 2( ) ( ( ), ( ), ( ))i i i i i i in if X f X f X f X   are the pseudo gradients at the location of the objective function. 
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Step 3: Set
'( ( ))i i ij iY X a sign f X   , where 1,2 ,j n   and sign  are symbolic functions 

 

Step 4: When vector 
1 2( , , )i i i inY y y y   is in the range of 

min max[ , ]x x  and ( ) ( )i if Y f X , change 
iY  to, 

otherwise it will not change. 

 

(2) Hope process 

Each monkey reached the highest peak in its respective range through the climbing process. After reaching the 

peak, it looked for a higher mountain than the current one by looking in all directions around it. When the highest 

mountain appeared, it moved towards the highest peak. , Otherwise stay in place. Therefore, the specific process is 

as follows: 

 

Step 1: Randomly generate a real number ( , )ij ijx b x b   within the range that the monkey can observe, 

randomly generate a real number 
ijy , set 1 2( , , )i i i inY y y y  , then 1 2( , , )MY Y Y Y  , where b  is the 

length of the observation range. 

 

Step 2: When the vector 
1 2( , , )i i i inY y y y   is in the variable range and ( ) ( )i if Y f X , change iY  to iX , 

otherwise perform step 1 until a feasible 
iY  is found. 

 

(3) Jump process 

The jumping process in the monkey algorithm is to re-search in a new field in order to obtain a better solution. The 

specific operations are as follows: 

 

Step 1: Generate a real number   in the limited interval [ , ]c d  of the monkey jump. 

 

Step 2: Set ( )ij ij j ijy x p x    , where 1

1 M

j ij

i

p x
M 

 
, where 1,2 ,j n  , where 

1 2( , , )np p p p   is the pivot. 

 

Step 3: When the vector 1 2( , , )i i i inY y y y   is in the range of min max[ , ]x x  and ( ) ( )i if Y f X , change iY  

to iX , otherwise perform steps 1 and 2 until a feasible iY  is found. 

 

4.4 Algorithm steps 

 

Step 1: The image to be segmented is converted to grayscale image to obtain the grayscale distribution, and 

according to the grayscale value of the image between [0,255], the position bound of the improved bat algorithm is 

also located in this interval. 

 

Step 2: Initialize a certain number of bat individuals in a specific solution space, the initialization process 

represents the population size, dimension and number of iterations, and each individual represents a solution in the 

solution space. 

 

Step 3: Calculate the fitness function of each bat individual according to Equation   (3)  

 

Step 4: The bat algorithm population is initialized according to section 3.1, the parameters are optimized according 

to section 3.2, and the individuals are filtered using the monkey colony algorithm according to section 3.3. 
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Step 5: When the individuals do not satisfy the termination condition, the next iteration is required according to 

steps 3-4, and the optimal result is obtained continuously through repeated operations until the termination 

condition is satisfied, and the image is segmented and evaluated according to the optimal threshold vector 

1 2( , , )mt t t  found. 

 

Ⅴ. Experimental Simulation 

 

In order to further verify the segmentation effect of the algorithm in this paper, the monkey swarm algorithm was 

selected, and the bat algorithm was used as a comparison algorithm for image segmentation, using the maximum 

inter-class variance and the structural similarity SSIM [10] values reflecting subjective evaluation as the image 

segmentation quality evaluation criteria. the range of SSIM is between [0,1], and the larger the value means the 

better the segmentation quality. 

 

1 2

2 2 2 2

1 2

(2 )(2 )
( , )

( )( )

x y xy

x y x y

c c
SSIM x y

c c

  

   

 


   
                                    (14) 

 

x , y  is the mean of the image ,x y , 
2 2,x y   is the variance of the image, xy  is the covariance of ,x y , and 

1c  and 2c are constants. In this paper, the SSIM value and segmentation time are chosen as the comparison 

indexes, and the hardware platform is Matlab 2012, CPU is Core i5 with 8GDDR3 memory, and the operating 

system is Windows 7 running on the host computer. In this paper, three images from Berkeley Segmentation Data 

Set and Benchmarks 500   (BSDS500) were randomly selected as segmentation objects, and the segmentation 

threshold was set to 3. The segmentation effects of threshold 1-3 are shown in Figure 1 (a)-Figure 3 (c). 

 

 
Fig.1: Plane Image            Fig.1 (a): threshold=1      Fig.1 (b): threshold=2     Fig.1 (c): threshold=3  

 

 
Fig.2: Swan Image    Fig.2 (a): threshold=1        Fig.2 (b): threshold=2      Fig.2 (c): threshold=3 

 

 
Fig.3: SeaStar Image          Fig.3 (a): threshold=1        Fig.3 (b): threshold=2   Fig.3 (c): threshold=3 



         CONVERTER MAGAZINE 
  Volume 2021, No. 5 

 
ISSN: 0010-8189 

© CONVERTER 2021 

www.converter-magazine.info 

744 

 

1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

S
S

IM

Image

 MA  BA  IBA

 
Fig. 4: SSIM contrast values for the three algorithms with a threshold of 1 
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Fig.5: SSIM contrast values for the three algorithms with a threshold of 2 
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Fig.6: SSIM contrast values for the three algorithms with a threshold of 3 
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Fig.7: Comparison of segmentation time of three algorithms with a threshold value of 1 
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Fig.8: Comparison of segmentation time of three algorithms with a threshold value of 2 
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Fig.9: Comparison of segmentation time of three algorithms with a threshold value of 3 

 

Figure 4-6 shows the comparison of the image segmentation quality of the three algorithms for different threshold 

values, when the threshold value is equal to 1, the segmentation quality of this algorithm is significantly better than 

the other three algorithms, which indicates that the improved algorithm can indeed improve the quality of 

segmentation. The SSIM value of this algorithm is always the smallest. On the whole, the algorithm in this paper 

does achieve good results in terms of segmentation quality under different thresholds, and it has obvious 

advantages over the BA algorithm, which indicates that the improvement of the algorithm has certain effect on 

improving the segmentation quality. Figures 7-9 show the time required for image segmentation under the three 

algorithms. Although the time spent by the algorithm in this paper is the least overall, the time required for 

optimization is indeed unavoidable due to the improved performance of the algorithm in this paper, especially after 

the operations of initializing the population, adaptive parameter optimization, and individual screening, the 

complexity of the algorithm has increased, but the time used for segmentation is relatively Therefore, from the 

overall comparison results, the time consumption of this algorithm is the least compared with the other two 

algorithms, which indicates that this algorithm can improve the performance of the algorithm after optimization, 

making it better in terms of image segmentation performance. 

 

Ⅵ. Conclusion 
 

In this paper, we propose an improved bat algorithm for image segmentation processing strategy, firstly, we 

describe the image segmentation based on the maximum inter-class variance method, and secondly, we optimize 

the bat algorithm by using chaotic initialization population, adaptive parameters, individual selection, etc. The 

experiments show that the algorithm achieves better results in image segmentation, and the next step will be to 

consider how to adopt the algorithm of this paper under multi-threshold conditions. The next step will be to 

consider how to adopt the effect of the algorithm in multi-threshold conditions, and to think more about both 

segmentation quality and segmentation time. 
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