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Abstract 

 

Neural Architecture Search (NAS) searches the architecture of neural network automatically in a large search 

space. The search space typically contains billions of network architectures, which makes it computationally 

expensive to search for the best-performing architecture. One-shot and gradient-based NAS methods have 

achieved good results in various computer vision tasks. Even though they achieved success, the current sampling 

methods are either fixed or manual, all of which are ineffective. In this paper, we propose a learning sampling 

module for neural architecture search (NAS) named TNAS, based on variational auto-encoder (VAE). This module 

can be easily embedded into the existing weight sharing NAS framework such as one-shot approach and 

gradient-based approach, and significantly improve the performance of search results. In NasNet-like search 

space, TNAS produced a series of competitive results on CIFAR-10 and ImageNet. In addition, combined with the 

one-shot method, our method obtains the latest results of ImageNet classification model under 400M FLOPs 

frequency hopping with a probability of 77.4% in a ShuffleNet-like search space. Finally, we performed an 

in-depth analysis of TNAS on the NAS-BENCH-201 dataset to verify the effectiveness of our proposed approach. 

 
Keywords: Neural Architecture Search, deep learning, algorithm 

 

 
I. Introduction 

 
Through the design of novel neural structures, deep neural networks have promoted the development of a variety 

of influential applications [1, 2] significantly. Automatically designing the neural network structures without 

manual intervention, known as neural structure search (NAS), has been in the spotlight in recent years. It achieves 

state-of-the-art performance in many areas, such as image recognition [3, 4], object detection [5, 6] and semantic 

segmentation [7]. 

 

In general, the search space for NAS tasks is huge. For example, NasNet [3] proposed a search space that contains 

6 × 109 viable cells. Searching such a huge design space costs 2,400 GPU days. The weight allocation mechanism 

has been proved to be an effective way to improve the efficiency of NAS search. Recent algorithms for 

high-efficiency NAS fall into two categories: one-shot approaches [8] and gradient-based approaches [9]. In the 

one-shot approach, previous studies have focused on the use of fixed sampling strategies [8, 10, 11]. In 

gradient-based approaches, the search usually does not require a sampling program [9, 12] or manual sampling 

[13].Despite these NAS methods have succeeded in various benchmarks, these sampling methods do not 

interactively learn the architectural distribution as the search process progresses, making the sampling process 

ineffective.  

 

We propose a VAE-based NAS learning and interactive sampling module TNAS and investigated the application of 

TNAS modules by combining TNAS with two mainstream NAS approaches, namely the one-shot approach [10, 14] 

and gradient-based approach [9, 15], both of which have achieved the latest performance in neural structure search 

tasks.  
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Figure 1: Schematic diagram of TNAS mechanism.  

 

We verify the TNAS in different search spaces for image recognition on CIFAR-10 and ImageNet datasets. In the 

NasNet-like search space, we apply TNAS to the gradient-based approach and the one-shot approach. Specifically, 

combined with the one-shot method, TNAS has a test error of 2.26% on CIFAR-10, which is better than the most 

advanced NAS method. In a Shufflenet-like search space, the combination of TNAS and one-shot achieves a top-1 

accuracy of 77.4% with 365M FLOPs in ImageNet classification, which is 1.1% higher than that of the most 

advanced Efficient-B0, and the computational complexity is reduced by 6.5%. Finally, we carry out analysis deeply 

on TNAS against the NAS-BENCH-201 benchmark to demonstrate the effectiveness of our proposed approach to 

architecture sampling. 

 

II. Related Work 

 
Neural Architecture Search (NAS). In recent years, the design of efficient neural networks has mainly shifted from 

using human knowledge to an automated approach known as neural structure search (NAS). NAS methods in 

earlier time used reinforcement learning (RL) [3] or evolutionary strategies [4] to search across thousands of 

individually evaluated networks, which computational cost is large. Recent work can be divided into two 

categories: One-shot methods [10, 11] and gradient-based approach [9, 15]. These two methods have obtained the 

latest results on a series of benchmark datasets [5-7].  

 

Sampling. Some previous work has applied sampling methods to the NAS framework. Bender et al. [8] randomly 

zeroes out a subset of operations in order to perform the one-shot method during the process of training 

super-network. Guo et al. [10] adopt uniform sampling, while Chu et al. [11] adopts fair and uniform sampling to 

reduce training bias in a single model. As for the gradient-based approach, Cai et al. [15] proposes a polynomial 

distributed sampling to alleviate the large memory consumption problem in the traditional gradient NAS approach 

[9]. Our method provides a new perspective on sampling methods for NAS applications. 

 

III. TNAS 

 
3.1 Motivation 

 

Many previous works of NAS discuss about the architecture distribution Γ (α) modeling. Typical Γ (α) is the 

architecture that uses fixed distribution (e.g., uniform distribution [8, 10]), or hand-crafted architecture 

distributions (e.g., Gumbel Softmax distributions [9, 12]). 

 

The expected structure distribution Γ (α) can interactively learn from share the network weights during searching. 

To this end, we put forward a kind of learning architecture distribution, including the distribution of t moment Γt(α) 

learn from new incoming architecture α, the distribution of t - 1 hour earlier architecture is Γt-1(α), we can study the 

process forms will be distributed to: 
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t t-1 t-1( ) T( ( ), Metric ( ))           (1)      

 
In equation 1, the Metric above represents a predefined measure like precision or loss, and T represents a random 

process. The distribution of architectures at time t is learned by both the prior knowledge on architecture 

distribution Γ (α) and new architectures data α at t−1 time, as in Figure 1.  

 

3.2 The use of VAE 

 

VAE approximates the marginal probability of the architecture distribution logpθ(α) by maximizing the lower 

bound of variation: 

 

~ ( | )- ( ( | ) || ( )) [log ( | )]           (2)KL z q zD q z p z E p z      

 
Specifically, the left term is the Kullback-Leibler divergence between the approximate posteriori (identifying the 

model) qφ(z|α) and the prior p(z). The right item is the expectation of rebuilding loss, which pθ(α|z) represents the 

variational inference. VAE extract latent variable z according to the prior distribution pθ(z), and input z into 

inference model pθ(α|z). In general, the prior distribution Pθ(z) can be set as the standard Gaussian distribution 

N(0, I). 

 

Let ={ }n
i io  be the sequence of operations oi representing an architectural string, where n is the total number of 

nodes in a network or cell. We use the encoder E to take α as the input and map it to the parameters μα and σα 

corresponding to the normal distribution N(μα, σα). Symmetrically, the decoder D is used to map ze to the 

reconstructed architecture α¯, where ze ~ N(μe, σe). The encoder E corresponds to qφ(z|α) and the decoder D maps 

to pθ(α|z). In specific, encoders E and decoder D are implemented by two TRANSFORMER networks. 

 

3.3 The use of transformer 

 

Both encoders and decoders in TNAS are made of multiple transformer [16] components stacked on top of each 

other. We mark the implicit state after the first layer as Zl={Zl
1,Zl

2,...,Zl
N}. As for Zl=T(Zl-1), T represents a 

transformer block with nhead’s head. The computing formula of the first transformer block is listed bellow: 

 

1

1
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Among these, Qk, Kk, Vk respectively represent attention operations “Query”, “Key” and “Value” of the kth layer.  

The usage of transformer architecture can enhance the ability of encoders and decoders to focus on the global and 

can compute in parallel to boost the computing efficiency. Transformer module can be embedded into VAE 

modules easily and improve the efficiency of VAE. 
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IV. TNAS for Neural Architecture Search 

 

4.1 Weight distribution mechanism 

 

The weight sharing method constructs a hypernetwork G (α, W), which contains all the valid structures α and the 

shared weights W. Any structure α is a subgraph of the hypernetwork and inherits the corresponding weights Wα. 

Therefore, we can transform the training form of weight allocation mechanism into solving a two-layer 

optimization problem: 

 

*
~ ( )

W

* *

W arg min E [L (G( ,W ))] (9)

arg min L (G( ,W )) (10)

train

val



  


 



 








 

 

4.2 One-shot framework 

 

Review One-Shot Architecture Search. In general, the one-shot method [9,12,15] consists of three steps: 1) training 

the weight-sharing super network. 2) Rank the architecture according to its performance on the supernetwork. 3) 

Exporting the final architecture through the search strategy. Previous methods typically used hand-made sampling 

methods [8, 10, 11]. 

 

The one-shot method was combined with TNA. TNAS-OS adopts a one-time framework and optimizes the 

sampling distribution: 

 

( ) (1 ) U( )+ ( | ) (11)p z        

 
The U(α) is a random uniform distribution, and pθ(α|z) is for variational distribution and mining parameters. In 

hypernet training, structures are randomly selected from pθ(α|z) and U(α) through possibilities   and 1 . As 

the search phase continues, the volume of data increases, so the super network trains more samples from TNAS. 

Variational distribution pθ(α|z) will converge to generate good performance of architecture during training. In the 

search stage, from pθ(α|z) sampling initial seeds, and then use genetic algorithm to search, such as Guo [10].  

 

4.3 Gradient-based framework 

 

Review Gradient-based architecture search. Gradient-based approach uses the independent discrete structural 

parameters to model the network.  

 

Combine the Gradient-based method with TNAS. 

 

( ) ( | ) (12)p z    

 

We extract an architecture αi from pθ(α|z), and update the super network weight Wαi and multinomial distribution 

parameter xi accordingly. 

 

V. Experiments 

 
5.1 NASNET-like search space 

 

Our TNAS is evaluated on gradient-based and one-shot approaches and compared with the latest NAS approaches 

in the same search space. We use "OS" to represent the one-shot method and "G" to represent the gradient-based 
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method. 

 
Table 1: Comparison of the most advanced architectures on CIFAR-10 in the Nasnet-like search space.  

Architecture Test Error Params Search Method 

 (%) (M)  

NASNet-A* [3] 2.65 3.3 RL 

AmoebaNet-B* [4] 2.55±0.05 2.8 Evolution 

Hierarchical Evolution [17] 3.75±0.12 15.7 Evolution 

PNAS [13] 3.41±0.09 3.2 SMBO 

ENAS* [18] 2.89 4.6 RL 

NAO-weight-sharing * [19] 3.53 2.5 Gradient 

DARTS* [9] 2.76±0.09 3.4 Gradient 

SNAS* [12] 2.76±0.09 3.4 Gradient 

GraphHypernet* [20] 4.3±0.1 5.1±0.6 Gradient 

DSO-share* [21] 2.84±0.07 3.0 Gradient 

BayesNAS* [22] + λ = 0.01 2.81±0.04 3.4 Gradient 

TNAS-G* 2.40 4.4 Gradient 

TNAS-OS*† 2.50 3.4 Evolution 

TNAS-OS* 2.26 5.2 Evolution 

* indicates that the model is trained with truncation. OS stands for One-Shot method. G represents the 

gradient-based method. † represents the hard parameter constraint for the search phase. 

 
Table 2: Comparison of the latest schema on ImageNet (200m-400m FLOPs) under Shufflenet-like search space.  

Architecture FLOPs Params Top-1 Acc. Top-5 Acc. 

 (M) (M) (%) (%) 

ShuffleNet V2 1.5 [23] 300 - 72.6 - 

MobileNet V2 1.0 [24] 300 3.4 72.0 91.0 

MobileNet V3 Large 1.0 [25] 219 5.4 75.2 92.2 

MnasNet-A2 [26] 340 4.8 75.6 92.7 

FBNet-B [27] 295 4.5 74.1 - 

Proxyless GPU [15] 320 4.0 74.6 92.2 

Single-Path NAS [10] 365 4.3 75.0 92.2 

FairNAS-A [11] 388 4.6 75.3 92.4 

EfficientNet-B0* [28] 390 5.3 76.3 93.2 

Baseline 360 6.7 77.1 93.3 

TNAS-OS 365 6.7 77.4 93.6 

* Represents the results of using the AutoAugment report. 

 
Performance on CIFAR-10. Table 1 indicates the results. Combined with the gradient-based method, the test error 

of this method can reach 2.4% when the parameter is 4.4M. Combined with the one-shot method, we give two 

results. One is to restrict the search with 3.5m parameters and obtain 2.5% test error. The other is training without 

any constrains, achieving 2.26% of 5.2m parameter test error. 

 

5.2 ImageNet classification in mobile environments 

 

Comparison with the latest methods. We choose models with FLOPS in the range of 200M to 400M. As shown in 

Table 2, it is worth noting that TNAS-OS far outperforms the most advanced models. In particular, TNAS is 1.1% 
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more accurate than EfficentNet-B0 [28]. To our knowledge, TNAS-OS is the first model to exceed 77% at 400M 

FLOPs without the use of strong regularization and data enhancement techniques (such as AutoAugment). 

 

5.3 TNA on the NAS-BENCH-201 dataset 

 

NAS-Bench-201 designs a carefully constructed unitary-search space and provides basic fact measures for all 

15625 architectures on the CIFAR-10, CIFAR-100, and ImageNet-16-120 datasets.  

 

Versus random sampling. We compare TNAS with random sampling, and the results of the three datasets are 

shown in Figure 2. Comparing VAE TrainData and RandomTopK, it is noted that the performance of the model 

sampled by the former is much better than the latter on CIFA-10, CIFA-100 and ImageNet-16-120. In addition, 

compared to the VAE TrainingData, it shows a comparable and better distribution of VAE Generation, indicating 

that our VAE training is good and capable of generating promising models.  

 

Comparison with evolutionary search. We compare TNAS with EA equipped with SPOS. The experiments of the 

three data sets are shown in Figure 3. The performance of TNAS sampling models is comparable to or better than 

that of EA, while using less computational cost.  

 

 
Figure 2: Comparison of TNAS and random sampling capabilities on CIFAR-10, CIFAR-100, and 

ImageNet-16-120 datasets. 

 

 
Figure 3: Comparison of TNAS and evolutionary search sampling capabilities across the three datasets. 

 

TNAS performance. We compare TNAS with various methods based on weight allocation, and the results are 

shown in Table 3. The average performance of TNAS on CIFAR-100 and ImageNet-16-120 is much better than 

other methods. 

 

In addition, marker inc controls the rate of sampling strategy from purely random distribution to absolute VAE 

generation. Therefore, we run TNAS with different inc values to investigate the impact on the generated 

performance.  We run all methods on three datasets separately, without an architectural transformation. We use 

SPOS+EA as baseline. Note here that we followed [11], running EA only after training SUPNET. In most cases, 

TNAS outperforms baseline on both measures, especially CIFAR-100 and ImageNet-16-120. Ideally, TNAS of the 

three datasets are 0.58%, 2.97%, and 2.11% higher than baseline at the maximum measurement, and CIFAR-100 

and ImageNet-16-120 are 1.54% and 3.60% higher than baseline at the average accuracy, respectively. We also 

give a result in Table 5. As can be seen from Table 5, compared to the TNAS in Table 4, TNAS performance in 

some cases decreases on the maximum measure, while in most cases, the average accuracy of all three datasets 

improves.  

 

Table 3: Performance of various weight-sharing search methods tested for ground authenticity. 
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Method Search (seconds) CIFAR-10 CIFAR-100 ImageNet-16-120 

RSPS 7587.12 87.66±1.69 58.33±4.34 31.14±3.88 

DARTS-V1 10889.87 54.30±0.00 15.61±0.00 16.32±0.00 

DARTS-V2 29901.67 54.30±0.00 15.61±0.00 16.32±0.00 

GDAS 28925.91 93.51±0.13 70.61±0.26 41.84±0.90 

SETN 31009.81 86.19±4.63 56.87±7.77 31.90±4.07 

ENAS 13314.51 54.30±0.00 15.61±0.00 16.32±0.00 

ResNet — 93.97 70.86 43.63 

optimal — 94.37 73.51 47.31 

TNAS† 33325.75 94.22 73.26 46.93 

TNAS 34913.27 93.03±0.53 71.86±1.24 45.08±1.52 

 
Table 4: Ground truth test performance of TNAS at different sampling latencies on NAS-BENCH-201. 

 CIFAR-10 CIFAR-100 ImageNet-16-120 

Methods Max accuracy Mean accuracy Max accuracy Mean accuracy Max accuracy Mean accuracy 

 10 50 100 300 10 50 100 300 10 50 100 300 10 50 100 300 10 50 100 300 10 50 100 300 

SPOS+EA,epoch=300 93.05 93.39 93.52 93.62 92.49 92.39 92.42 92.38 69.18 70.25 70.55 70.77 68.26 68.22 68.20 68.23 44.65 44.92 45.17 45.33 40.63 40.60 40.48 40.48 

SPOS+EA,epoch=400 93.33 93.53 93.54 93.64 92.57 92.52 92.50 92.50 69.26 70.51 70.62 71.15 68.24 68.39 68.46 68.50 43.01 44.00 44.31 45.09 40.28 40.15 40.18 40.25 

TNAS, 0.0inc 
 

93.50 93.91 94.08 94.22 91.35 91.14 91.44 91.52 70.91 71.77 72.36 72.86 66.57 66.94 66.48 66.96 44.31 45.87 45.36 46.94 37.92 39.03 38.74 39.10 

TNAS, 0.04inc 
 

93.41 93.52 93.51 93.60 92.70 92.52 92.51 92.51 71.56 72.07 72.33 72.54 69.66 69.44 69.37 69.43 43.17 45.29 44.89 45.33 40.29 40.31 40.45 40.55 

TNAS, 0.05inc 
 

93.10 93.41 93.45 93.63 92.42 92.45 92.45 92.45 71.28 71.74 72.08 72.39 69.80 69.61 69.62 69.56 43.32 45.49 45.33 45.68 40.26 40.70 40.57 40.58 

TNAS, 0.0625inc 
 
93.20 93.34 93.35 93.52 92.33 92.37 92.37 92.34 71.66 71.93 72.35 72.65 69.37 68.77 68.88 68.74 43.62 45.55 45.86 46.04 40.67 41.15 40.97 41.02 

TNAS, 0.1inc 
 

93.15 93.30 93.36 93.48 92.36 92.33 92.36 92.35 72.11 72.84 72.99 73.21 69.34 68.91 69.02 68.89 45.85 45.94 46.59 46.59 41.25 41.76 41.69 41.82 

TNAS, 0.2inc 
 

93.32 93.09 93.23 93.44 92.34 92.17 92.15 92.15 72.23 73.17 72.90 73.22 68.83 68.86 68.59 69.03 44.56 45.31 45.63 45.75 42.51 42.38 42.31 42.45 

TNAS, 0.5inc 
 

93.15 93.28 93.39 93.42 92.06 92.02 91.95 91.96 70.52 72.17 72.44 72.74 67.14 67.83 67.53 67.75 46.29 47.03 47.00 47.05 43.59 44.20 43.92 44.02 

 
Table 5: Ground truth test performance of TNAS with 500 sample space on NAS-BENCH-201. 

 CIFAR-10 CIFAR-100 ImageNet-16-120 

Methods Max accuracy Mean accuracy Max accuracy Mean accuracy Max accuracy Mean accuracy 

 10 50 100 300 10 50 100 300 10 50 100 300 10 50 100 300 10 50 100 300 10 50 100 300 

SPOS+EA, epoch=300 93.05 93.39 93.52 93.62 92.49 92.39 92.42 92.38 69.18 70.25 70.55 70.77 68.26 68.22 68.20 68.23 44.65 44.92 45.17 45.33 40.63 40.60 40.48 40.48 

SPOS+EA, epoch=400 93.33 93.53 93.54 93.64 92.57 92.52 92.50 92.50 69.26 70.51 70.62 71.15 68.24 68.39 68.46 68.50 43.01 44.00 44.31 45.09 40.28 40.15 40.18 40.25 

TNAS, 0.0inc 
 

92.89 93.50 93.81 94.21 92.22 92.32 92.41 92.45 69.60 71.15 71.75 72.86 68.21 68.47 68.68 68.61 42.73 44.46 45.27 46.62 40.60 40.58 40.56 40.65 

TNAS, 0.04inc 
 

92.75 93.39 93.48 93.57 92.63 92.66 92.63 92.54 71.16 72.03 72.07 72.26 70.42 70.15 70.18 70.09 41.84 43.72 44.52 44.94 40.55 40.46 40.55 40.46 

TNAS, 0.05inc 
 

92.82 93.13 93.34 93.40 92.42 92.33 92.41 92.43 70.48 71.49 71.79 72.14 69.84 70.05 69.89 69.92 41.86 44.76 44.76 45.59 40.05 40.58 40.45 40.67 

TNAS, 0.0625inc 
 
93.10 93.21 93.36 93.48 92.44 92.41 92.43 92.42 71.01 72.20 72.41 72.55 70.38 70.21 70.22 69.87 43.46 45.19 45.19 45.44 41.41 41.27 41.28 41.21 

TNAS, 0.1inc 
 

92.95 93.23 93.28 93.42 92.52 92.41 92.37 92.34 72.15 72.30 72.56 73.13 71.13 70.93 70.77 70.05 45.15 45.88 46.22 46.37 43.89 43.81 43.62 43.21 

TNAS, 0.2inc 
 

92.66 92.77 92.87 92.96 92.20 92.10 92.14 92.13 71.34 72.68 73.09 73.22 70.78 70.66 70.64 70.01 43.93 45.28 45.39 46.11 42.86 43.14 42.94 42.63 

TNAS, 0.5inc 
 

92.72 92.90 92.98 93.27 92.49 92.36 92.25 92.00 71.39 72.28 72.35 72.57 70.05 69.59 69.50 68.84 45.17 46.00 46.63 47.03 44.36 44.59 44.53 44.60 

 
VI. Conclusion 

 
This paper proposes a learning sampling module (TNAS) based on VAE to improve the efficiency and accuracy of 

neural network architecture search. The experimental results obtain a series of best results in various data sets and 

search space. Specifically, the test error of TNAS on CIFAR-10 is 2.26%, and TNAS obtains the latest results of 

ImageNet under 400M FLOPs frequency in a ShuffleNet-like search space. The probability of finding the optimal 

structure has increased by 200%. In general, the TNAS method provides a new and practical perspective for 

sampling methods in neural structure search. 
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