
CONVERTER MAGAZINE 

Volume 2021, No. 3 

ISSN: 0010-8189 

© CONVERTER 2020 

www.converter-magazine.info 

198 

 

Detection of Node Capture under Asynchronous Sleep Mode Based on 

Recurrent Neural Network 

 
Jintao Gu

 1*
, Jianyu Wang

 1
, Hao Sun

 2
 

1
School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, China 
2
School of Computer Science, Beijing University of Posts and telecommunications, Beijing, China 

*Corresponding Author. 

 
Abstract 

 
In recent years, wireless sensor networks (WSNs) have found numerous applications in industrial manufacturing 

and people’s daily lives. However, security risks associated with the use of WSNs have also become increasingly 

pronounced. An attacker launching an internal attack on a WSN must first physically capture several nodes, i.e., 

take control of the target nodes by acquiring, cracking, and analyzing important information carried by the target 

nodes, thus laying the groundwork for subsequent attack steps. Therefore, physical node capture is a critical step 

in an internal attack on a WSN. Detecting behaviors that indicate physical capture of nodes provides an early 

warning of a network attack, allowing steps to be taken to prevent further attacks from being launched from the 

captured nodes. This paper proposes an RNN (recurrent neural network)-based detection method that can be used 

to detect node capture in WSNs with asynchronous sleep mode at an early stage (i.e., before captured nodes rejoin 

the network). Thus, the method enables early detection of network attacks. During the decision-making process, a 

common monitoring mechanism that relies on cooperation between neighboring nodes is employed to improve 

detection accuracy. The proposed method obtains the sensor nodes’ states and makes a judgment with the help of 

RNN, achieving accurate detection of node capture under the condition of unsynchronized clocks. Simulation 

results demonstrate the proposed method’s capability to achieve high detection accuracy. 
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I. Introduction 

 

Thanks to their self-organizing capability, convenience, and low cost, wireless sensor networks are widely used in 

the sensing layer of the Internet of Things (IoT) suitable for a broad range of applications such as smart home, 

health monitoring, environmental monitoring, and battlefield data collection
[1-3]

. To ensure high accuracy in data 

collection, wireless sensor networks are usually deployed with several redundant nodes, and the sleep/wake 

mechanism is used to reduce the nodes’ energy consumption
[4]

. In practical applications, sensor nodes are usually 

deployed in a harsh open environment, often lacking necessary physical protection. Moreover, the networks are 

generally not equipped with physical tamper-proof devices due to cost constraints
[5]

. Therefore, the open nature of 

their environment and wireless communication expose the nodes to various security threats. By obtaining all 

important confidential data stored in the nodes (including sensing data, codes, and keys) and modifying the 

program codes
[6]

, the attackers can manipulate the sensor nodes to launch an internal attack on the network, thereby 

taking control of the network or damaging the network. 

 

An internal attack on wireless sensor networks generally unfolds in three stages
[7, 8]

:  

 

stage 1: Physically capture several nodes, and obtain and crack all the key confidential data stored in the nodes;  

 

stage 2: Register the captured nodes or their clone nodes (also known as replicated nodes) in the original network 

and join the network communication;  
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stage 3: Manipulate the captured nodes to launch internal attacks such as selective forwarding attack, black hole 

attack, witch attack, energy consumption attack, and malicious data
 
injection attack.  

 

Researchers have developed several detection techniques suitable for different attack stages. Most techniques 

proposed in the literature are intended for detection in the second and third stages. Such techniques include, for 

example, node redeployment location detection
[9]

, node clone detection
[5, 10]

, selective forwarding attack 

detection
[11]

, black hole attack detection
[12]

, witch attack detection
[13]

, Denial of Service attack detection, and 

malicious data injection detection
[14]

. Node capture should be detected as soon as possible to reduce the damage 

caused by the captured nodes to the network. Ideally, the captured nodes should be discovered as soon as the node 

capture occurs and be isolated from the network communication
[15]

. Such a node discovery action corresponds to 

the early detection of the physical node capture attack in the first stage. 

 

This study develops a new method for detecting node capture attacks in wireless sensor networks. The method 

adopts a mechanism for scheduling and broadcasting node announcement messages in a unified manner to ensure 

that neighboring nodes have at least one opportunity to receive announcement messages during the sleep period. 

During the monitoring process, a mechanism relying on the neighboring nodes’ cooperative decision-making 

effectively reduces the false alarm rate. The problem of low detection accuracy caused by unsynchronized clocks 

in the wireless sensor network is solved using a recurrent neural network (RNN). 

 

II. Related Work 

 

Physical node capture attack typically exploits sensors’ programming and testing interfaces – such as the JTAG 

interface (used for chip testing and online system programming) – to compromise the sensors, effectively gaining 

control over them. Becher et al. [16] show that the time and conditions needed to accomplish a node capture attack 

vary depending on the degree of the required node control. Nevertheless, in an attack, the target nodes are 

necessarily cut off from normal network communication for a certain period, ranging from several minutes to 

several hours. Taking advantage of this common feature of node capture attacks, the existing node capture 

detection methods employ broadcasting beacon messages, hello messages, and heartbeat messages exchanged 

between nodes to monitor each node’s survivability and detect captured nodes at the earliest possible time. 

 

The CAT method
[17]

 pairs nodes into node couples. Each node in a couple monitors the survivability of the other 

node by sending and receiving beacon messages. If one node fails to receive the beacon message sent by its pair 

node or receives a false beacon message, it concludes that the other node is experiencing a node capture attack and 

sends off an alarm. However, if both nodes in a node couple are captured simultaneously, they cannot detect the 

attack and send the alarm. Further, this method does not consider the node sleep mechanism. A node is in a sleep 

state misses the survivability announcement messages broadcasted by its neighboring node and cannot broadcast 

its announcement messages, which leads to a high false alarm rate. 

 

The First Stage Detection (FSD) and Sink Enhanced FSD (SEFSD) methods 
[18]

 dictate that each node periodically 

broadcasts a greeting message to its neighboring nodes. Once the monitoring node fails to receive a greeting 

message, it starts counting consecutive messages that have not been received. When the count exceeds a certain 

limit, the monitored node is deemed as captured. The difference between the two methods lies in their response to 

captured node detection. FSD broadcasts alarm information to the entire network immediately after detecting an 

attack. In contrast, SEFSD sends an alarm to the base station (BS), and then BS sends alarm information to the 

whole network periodically with a fixed interval. SEFSD generates less communication overhead and consumes 

less power than FSD. However, the two methods suffer the drawback of relying on a single type of information. 

The monitoring node judges whether the monitored node has been captured based on the receipt of the declaration 

message from the monitored node without seeking confirmation from other neighboring nodes. Such a procedure 

results in a higher false alarm rate. 

 

The Adaptive Early Node Compromise Detection (AdaptENCD) method
[15]

 also utilizes heartbeat messages to 
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monitor the node survivability. This method uses different broadcasting frequencies flexibly for different clusters 

in a clustered network, thus promoting energy saving. This method is suitable for clustered networks. Its carefully 

designed intra-cluster node communication and key distribution/update mechanisms work well under different 

network operating conditions. However, the flexible use of message broadcasting frequency makes it difficult to 

detect node capture occurring in the same cluster accurately. 

 

The method proposed by Ding et al.
[17]

 considers nodes’ sleep mechanism in its design of a node capture detection 

mechanism based on survivability monitoring. However, this approach incurs extra resource consumption as it 

requires an additional synchronization mechanism to ensure all nodes enter the sleep state and are awakened 

simultaneously, thus limiting its application scope. The method proposed by Hsin and Liu
[18]

 dictates that the 

monitoring node takes into account the opinions of other nodes when making a decision (so-called 

decision-making based on local consensus). Still, this method does not consider the node sleep mechanism. 

 

III. Framework 

 

The detection system proposed in this paper can be divided into two functional modules (see Figure 1): the sensors 

state information extraction & collection module and the RNN-based calculation & decision module. 

 

In the sensor state information extraction & collection module, each node monitors the message sending and 

receiving activities of all its neighboring nodes, based on which it forms a state transition sequence record for each 

neighboring node. In the RNN-based calculation & decision module, each node is assigned a detection node. The 

detection node inputs the message sequence into the RNN for training. The trained detection model is then 

embedded into the sensor node for detecting whether the subsequent message sequence is normal. 
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Figure 1 The node capture detection framework 

 

The specific idea is as follows. First, the information regarding a certain target node in the IoT link and the nodes 
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that exchange data with this node (either adjacent or non-adjacent nodes) is extracted in a non-discriminative 

manner. The target node’s state transition is judged based on the extracted information, and a state transition 

sequence is generated. Then the state transition sequence is input into the RNN model for training. For different 

target nodes, the corresponding detection models are created. The trained detection model is embedded in the 

detection node connected with the target node. The detection procedure is as follows: 

 

1) When the target node does not respond to the messages sent by other nodes, the monitoring node makes a 

judgment on the target node’s collected state sequence. If the sequence is judged to be a typical message sequence, 

the monitoring node continues to monitor and terminates the current judging state. If the sequence is judged to be 

an abnormal message sequence, the monitoring node starts a timer and waits for other nodes to refute the 

judgment. 

 

2) If the timer expires and the monitoring node fails to receive verification messages from other detection nodes, 

the monitoring node removes the suspicious target node and broadcasts the information to the whole network. If 

the timer does not expire and the verification information is received, the monitoring node resets its detection state 

relating to the target node. Once the outlined actions are executed, the monitoring node terminates the judging 

state. 

 

IV. The Method Details 

 

4.1 Overview of the proposed method 

 

In the node capturing process, the attacker must cut off the target nodes from the network for a specific time. To 

discover the attackers’ node capture behavior in time, the proposed method puts a mechanism in place which 

enables monitoring the nodes’ survivability.  

 

4.2 Definition of node communication messages 

 

Data transmission message: When node i continuously conducts normal data transmission, it is judged to be in a 

normal active state in which no interference information from other nodes is needed. 

 

Wake-up message: Once node i finishes a sleep session and the timer T1 expires after wake-up, the node 

broadcasts a wake-up message to the neighboring nodes. The message format is <awake, Idi, Ni>, which is denoted 

as A(i). Idi is the Id of node i, and Ni denotes the node i’s neighbor list. 

 

Sleep message: Node i entering a sleep session broadcasts a sleep message to the neighboring nodes. The message 

format is <sleep, Idi, Ni>, which is denoted as A(i).  

 

Inquiry message: When node i does not respond to messages and the monitoring node judges that the node is 

suspicious, it needs to broadcast an inquiry message to the neighboring nodes asking them to assist in the 

examination. The format of the broadcast message is <detect, Idi, Idj, Ni> and is denoted as D(i). Here Idi is the Id 

of node i, Idj is the Id of the examined node j, and Ni is the neighbor list of node i. 

 

Monitoring cancellation message: When node i receives the inquiry message about node j sent by other nodes, it 

checks its monitoring results in the current work cycle. If node j is in the normal state, node i replies to the 

inquiring node with the monitoring cancellation message. The format of the message is < safe, Idi, Idj >. 

 

Isolation state message: When node i is judged to be captured, it is necessary to issue a warning to the whole 

network and remove the node. The format of the alarm message is < danger, Idi, Idj>.  
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4.3 Detailed procedure of the node capture detection 

 

The procedure for early node capture detection is run in a distributed way among all nodes in the network. Each 

node makes a judgment during a sleep session based on its monitoring data and the neighboring nodes’ feedbacks. 

The judgment is broadcasted to the whole network. When the judgment is uncertain, the node broadcasts an 

inquiry message to the surrounding nodes and decides whether the monitored node is abnormal based on the nodes’ 

feedback. When the currently monitored node is judged to be in an abnormal state, the judgment will be sent to the 

base station through multi-hop routing. The base station notifies the whole network about the judgment 

periodically and takes necessary measures (e.g., isolate the captured nodes and update keys). 

 

Each node is responsible for monitoring another node in its neighborhood while simultaneously being monitored 

by another neighboring node. Every node maintains a state information tag S(s) for the node it monitors. S(s) can 

be expressed as < S, id >, and the state set is S={normal, monitoring started, continuous monitoring, suspected}. 

The BS node is responsible for setting the abnormal alarm threshold TH for the whole network. 

 

The procedures monitoring node (m) follows to judge the state of the monitored node (s) and the cooperative 

decision-making process are shown in Figure 2. 

 

Normal state: No matter what state the monitored node s is in, as long as the monitoring node m receives any 

message from s during the working period or the other nodes judge the node as normal, the monitored node’s state 

is set to normal. A message indicating that node s is in the normal state is broadcasted to the neighboring nodes at 

the end of the working period (i.e., immediately before entering the sleep state). Under normal conditions, there are 

three possible scenarios:  

 

1) The monitoring node receives messages from other nodes indicating that node s is in the normal state. The only 

required action is to announce that node s is in the normal state before entering the sleep state. 

 

2) The monitoring node receives a message from another node indicating that node s is in a suspicious state. It 

sends a suspicion cancellation message to the message source node. 

 

Continuous monitoring state: When monitoring node m wakes up, there is no need to modify the monitored 

node’s state if the neighboring node of the monitored node is in the continuous monitoring state. Normally, there 

are three possible scenarios: 

 

1) Node m first checks the number of continuous monitoring cycles accomplished by node s. If the number of 

monitoring cycles is greater than or equal to TH, node m sets the state of node s to ‘suspicious’ and sends a 

detection message to the neighboring nodes. 

 

2) If m receives any message from node s (including A(s) message) during the working cycle, the node sends an 

inquiry message to other nodes and changes the state of s to ‘normal’. 

 

3) If m receives messages from other neighboring nodes during the working cycle indicating that node s is in the 

normal state, m changes the state of node s to ‘normal’. 

 

4) Suppose m fails to receive any message from node s during the working cycle while also not receiving any 

message from other nodes indicating node s is in the normal state. In that case, node m increases the count of 

continuous monitoring cycles for node s by one before entering the sleep state. 

 

Sleep/abnormal state (SoA): When the monitoring node’s timer expires, node s is forced to undergo an abnormal 

turn-off and enter the abnormal sleep state. In contrast, when node s receives the sleep instruction, it undergoes 

normal turn-off and enters the normal sleep state. When node s wakes up again, two possible scenarios may occur: 
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1) If the node was in the normal sleep state before turn-off, it enters the normal state. 

2) If the node was in the abnormal sleep state before turn-off, it enters the continuous monitoring state. 
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Monitoring

Ax(i) < TH and send  activate 

Ax(i) TH and Send  activate 

No response

Send  deactivate response

Ax(i) TH or receive  abnormal 

Data transmission

No response

 
Figure 2 State transitions of monitored node i and monitoring node s  

 

By enabling node m to perform active monitoring on neighboring nodes and using the unified mechanism of 

scheduling and broadcasting node announcement messages, the proposed method effectively detects node capture 

attacks under asynchronous sleep mode but also works well under synchronous sleep mode. It should be noted that 

each node m is both a monitoring node and a monitored node. In other words, each node is monitored by its 

neighboring nodes and follows the unified mechanism of scheduling and broadcasting node announcement 

messages. 

 

When BS broadcasts the state judgment message about a certain node during the monitoring process, it indicates 

that the node is experiencing clock synchronization issues or is in an abnormal state. In both cases, the node should 

be isolated. For the nodes at the network edge or other special nodes located at relatively isolated places, BS 

should perform the task of judging whether the node has been captured. At the initial stage of network deployment, 

each node sends its neighbor list to BS. Thus, when BS receives the node capture alarm message, it notifies the 

whole network of the node capture periodically and updates each node’s neighbor list by deleting the captured 

node from the lists. If a node has only one neighboring node and that node has been captured, BS also deems this 

node as a captured node because it has become an isolated node (which means no node is monitoring it). 

 

4.4 Recurrent neural network  

 

RNN is a neural network with a special structure that was put forward following the idea that human cognition is 

based on past experience and memory. RNN got its name due to the current sequence output being related to the 

previous outputs. Specifically, the network memorizes the previous information and applies it to the current output 

calculation. That is to say, the nodes between hidden layers are connected instead of disconnected, and the input of 

hidden layers includes not only the output of the input layer but also the hidden layer’s output at the previous 

moment. The RNN’s structure is illustrated in Figure 3. 
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Figure 3 Structure of the recurrent neural network (RNN) 

 

As noted, RNN is composed of an input layer, hidden layer, and output layer. The input layer is responsible for 

inputting node energy information into the neural network. The main task of the hidden layer is calculating input 

data. Finally, the output layer outputs the prediction results. 

 

V. Experiment 

 

The conducted simulation experiment aimed to evaluate the effectiveness and communication overhead of the 

proposed node capture detection method. The detection rate, false-positive rate, false-negative rate, and 

communication overhead during the detection process were extracted. Further, the performance of the proposed 

method before and after embedding the RNN algorithm was studied. The experiment used OMNET++ for 

simulation. Two typical node capture detection algorithms, CAT
[7]

 and SEFSD
[8]

, were also simulated under the 

same conditions
 
for comparison. Part of the experiment related to deep learning was conducted in the 

Ubantu14.04LTS environment. Python 3.5.4 and Keras 2.1.2 were used to construct the neural network framework, 

and Google’s open-source tensorflow1.4.1 was used as the back-end computing framework. The CPU of the server 

was Inter (r) Xeon (r) CPU E5-2637v4 @ 3.50ghz, and the GPU was TITAN(X)(Pascal). 

 

5.1 Description of the experiment and verification indicators 

 

In the experiment, 200 nodes and one base station were randomly and evenly deployed in a 200 m×200 m site. 

Each node’s communication range was 40 m. The node capture was simulated by deactivating the nodes’ 

communication function. The highest proportion of captured nodes was set to 25%, and the captured nodes were 

selected randomly. After the node deployment was completed, a random short delay was imposed on each node 

before entering a work cycle to simulate the asynchronous sleep state. Considering that attackers with high skills 

and the right equipment need only a short time to compromise nodes through programming a test interface, the 

time required for node capture (pc) was set to 300 s. The sleep scheduling period was set to 60 s (the working 

period pw was 40 s, and the sleep period ps was 20 s). The step timer T2 set by the node for each neighbor node was 

10 s. To ensure the normal RNN function, the data acquisition, annotation, and training processes were carried out 

first for one hour. The proportion of captured nodes was 40% to ensure the balance between positive and negative 

samples in the training data. During initiation, the clock cycles of 20% nodes were set with certain errors, and the 

clock cycles of 10% nodes were set to different values. The compiled training data set is described in Table 1.  

 

Table 1 The number and proportion of samples in the training data 

 Number of samples Proportion of samples 

Total samples 714,682 100% 

Normal samples 287,542 40.25% 

Captured samples 287,697 40.25% 

Samples not on time 139,443 19.50% 

 

The verification was carried out using the following metrics: 
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100%
TP

P
TP FP

 
 , 

100%
TP

R
TP FN

 
 , 

where P represents precision, indicating the fraction of actual attacks among the detected ones. Recall (denoted R) is 

the proportion of node captures that have been detected. TP stands for true positive, FP is false positive, and FN 

denotes false negative. 

 

5.2 RNN performance and data analysis 

 
To ensure high performance of the proposed detection method, it is first necessary to verify the RNN’s 

performance in the algorithm. The training adopts 40% cross-validation, and the model’s obtained precision and 

recall rate are shown in Tables 2–4. 

 

Table 2 Training results on normal nodes 

 Dataset1 Dataset2 Dataset3 Dataset4 

Validation number 72,000 72,000 72,000 72,000 

Error number 236 184 339 278 

P 99.52% 99.63% 99.69% 99.73% 

R 99.67% 99.74% 99.53% 99.61% 

 

Table 3 Training results on nodes with unsynchronized clock 

 Dataset1 Dataset2 Dataset3 Dataset4 

Validation number 72,000 72,000 72,000 72,000 

Error number 452 531 629 553 

P 99.40% 99.41% 99.34% 99.39% 

R 99.37% 99.26% 99.13% 99.23% 

 

Table 4 Training results on captured nodes 

 Dataset1 Dataset2 Dataset3 Dataset4 

Validation number 34,861 34,861 34,861 34,861 

Error number 216 347 290 275 

P 99.45% 99.21% 99.54% 99.37% 

R 99.38% 99.00% 99.17% 99.21% 

 

The tables show the precision and recall rate results obtained when RNN was employed to detect node capture in 

three scenarios. It can be seen that RNN achieves high accuracy and recall rate in two scenarios: when there are 

captured nodes and when the clocks are out of sync. These results can be attributed to the sensor nodes’ working 

mode. As the sensors can only work in a very limited variety of modes, high accuracy can be achieved even though 

the input data is huge. The proposed detection method dictates that a sensor node is isolated immediately once the 
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base station deems it as having an unsynchronized clock out or being captured. Therefore, if RNN cannot achieve 

high accuracy, many sensor nodes are mistakenly considered problematic and removed from the sensor network, 

causing the problem of an insufficient number of sensor nodes. It can be seen from the experimental data that the 

trained RNN model provides powerful support to the proposed detection method, effectively performing the node 

detection when the clocks are unsynchronized and detecting the node captures.  

 

5.3 Simulation results and analysis 

 

An experiment was carried out to compare the detection effects before and after embedding the RNN algorithm 

into the proposed method. The specific experimental results are shown in Figures 4 and 5. 

 

 
Figure 4 Prediction results before and after embedding the RNN algorithm 
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Figure 5 Recall rate results before and after embedding the RNN algorithm 

 

It can be seen from the figures that embedding RNN into the proposed method improves the detection precision 

and recall rate effectively. On the one hand, embedding RNN enables effective node detection when the clocks are 

out of sync. On the other hand, the RNN’s high precision and recall rate can improve the detection method’s 

performance and effectively supplement the proposed method when the number of captured nodes is large.  

 

VI. Conclusion 

 

The existing methods for node capture detection in wireless sensor networks do not consider the nodes’ 

asynchronous sleep. Thus, this paper proposes a method for detecting node capture attacks under the asynchronous 

sleep mode, consequently enabling early detection of the network attacks. The proposed method ensures that the 

monitoring node receives the declaration messages from the neighboring nodes through a unified mechanism of 

scheduling and broadcasting node declaration messages and improves the detection performance by combining the 

local collaborative decision-making mechanism with the RNN algorithm. Simulation results demonstrate the 

proposed method’s effectiveness in counteracting asynchronous sleep on node capture detection, improving the 

detection rate of node capture attacks, and significantly reducing both the false-negative and false-positive rates. 
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