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Abstract 

 

Compressed sensing theory breaks the traditional sampling limit. It projects the high-dimensional signal into a 

low-dimensional space to get a small number of measured values through the observation matrix, and then uses 

the reconstruction algorithm to get the original signal with high probability. In order to solve the problem of 

unknown signal sparsity in practical applications, it is proposed an improved regularized adaptive matching 

pursuit algorithm based on LDPC measurement matrix. In the case of unknown sparsity, it is used the LDPC 

matrix with quasi-cyclic characteristic for observation in the improved algorithm, which sets adaptive threshold 

automatically to adjust the number of atoms of candidates, and passes back to eliminate error atoms. At the same 

time, the LDPC matrix corresponding to the new atomic number is updated to improve the accuracy of 

reconstruction. The experimental results show that the step size can gradually approach the value of sparsity, so as 

to reconstruct the original signal accurately under the premise of unknown sparsity and the same test conditions. 

Thus it can ensure the global optimization and reduce the reconstruction time. In addition, because the selected 

LDPC observation matrix is quasi-cyclic, the storage space of the observation matrix can be saved, which is 

beneficial to hardware implementation, and these provide a better implementation method for the practical 

application of compressed sensing theory. 
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I. Introduction 

 

As a new theory in the field of signal processing, compressed sensing has attracted more and more attention from 

researchers in related fields. The theory breaks through the traditional Nyquist sampling theorem in the way of 

signal acquisition. The data got by the observing matrix is compressed properly to get a small amount of measured 

values. It can overcome the shortcomings of the traditional sampling method, such as large amount of data, long 

time consuming and taking up huge storage space. The theory will have more broad application prospects in the 

field of signal processing. 

 

One of the key problems of compressed sensing is the design of signal reconstruction algorithm, which should be 

able to reconstruct the original signal quickly, statically, efficiently, accurately or approximately precisely by use of 

as few compressed measured values as possible [1]. Traditional signal reconstruction algorithms mainly fall into 

three categories: convex optimization (relaxation) algorithm, greedy algorithm, and Bayesian statistical 

optimization algorithm. Among them, convex optimization algorithms mainly include interior point method, least 

absolute shrinkage and selection operator (LASSO) algorithm [2], the least angle regression (LARS) algorithm [3], 

gradient projection (GP) algorithm [4], soft/hard iterative threshold (SIT/HIT) algorithm [5] and other sparse 

reconstruction algorithms, which solve signal approximation by converting non-convex problems into convex ones. 

It has the characteristics of small reconstruction error and good reconstruction effect, but it has high complexity, 

large amount of calculation and long reconstruction time. However, it is difficult to apply for large-scale problems 
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and has poor practicability. 

 

Greedy algorithms mainly include match Pursuit (MP) algorithm [6], orthogonal match Pursuit (OMP) algorithm 

[7], regularized Orthogonal match Pursuit (ROMP) algorithm[8], subspace pursuit(SP) algorithm [9], compressed 

sampling matching pursuit (CoSaMP) algorithm [10], stagewise orthogonal match pursuit (StOMP) algorithm [11], 

sparsity adaptive matching pursuit (SAMP) algorithm [12], and regularized adaptive matching pursuit (RAMP) [13] 

algorithm. This kind of algorithm selects the optimal matching atom from the measurement matrix in each iteration 

process to perform sparse approximation to the original signal. The algorithm has relatively low computational 

complexity, fast operation speed, good reconstruction effect and is easy to implement and widely used. However, 

compared with the convex optimization algorithm, more compression measurements are needed and the 

reconstruction accuracy is relatively low.  

 

Bayesian statistical optimization algorithm mainly includes FOCal Underdetermined System Solver (FOCUSS) 

algorithm [14] based on lp norm and reweighted algorithm with iterative support detection (RISD) [15], where 

0<p<1. The number of compression measurements, the computational complexity and the accuracy of signal 

reconstruction required by this kind of algorithm are generally between the relaxation and greedy algorithms. 

 

II. Research Status of Signal Reconstruction Algorithms 

 

In recent years, many scholars have studied the improvement and application of signal reconstruction algorithm. In 

2016, the regularized LASSO estimation based on l1 norm and basis tracking denoising algorithm for the 

compressed sensing of noisy signals were studied, and the regularization problem of l2 norm and l0 norm were 

discussed [16]. A backtracking regularized adaptive matching pursuit (BRAMP) algorithm was proposed to 

reconstruct the original signal when the sparsity is unknown. The adaptive threshold was used to screen atoms, and 

the backtracking method was used to eliminate the wrong atoms selected from the support set so as to improve the 

reconstruction accuracy [17]. 

On the purpose of reducing hardware complexity of OMP algorithm, two different modifications to OMP 

algorithm named Thresholding technique for OMP (tOMP) and gradient descent OMP (GDOMP) were proposed 

in 2017. TOMP algorithm modified identification stage of OMP algorithm to reduce reconstruction time and 

GDOMP algorithm modified residual update phase to reduce chip area [18]. Based on the backtracking idea of 

subspace tracking (SP) algorithm, conjugate gradient descent algorithm was used instead of least square method to 

improve the orthogonal matching tracking (OMP) algorithm, so as to ensure good reconstruction quality and better 

reconstruction speed and stability [19].   

 

For the problems of large time overhead and low reconstruction success probability, an improved orthogonal 

complement space matching and tracking algorithm was proposed in 2018. The fuzzy threshold method was used 

to select the atoms of the support set, which reduced the number of reconstruction iterations and accelerated the 

convergence speed [20].An accelerated multipath matching pursuit (MMP) algorithm to reduce the running time 

was proposed in 2019, which adopted the strategy of pruning trees to improve the existing MMP algorithm [21]. 

 

From the references in recent years, it can be seen that there is less amount of calculation of sampling, and larger 

amount of calculation of restruction in the compressed sensing. The research on signal reconstruction algorithm 

mainly lies in how to make a trade-off between the reconstruction effect and computational complexity, how to 

select good observation matrix, and how to approach signal sparsity that is usually unknown in the practical 

application. These are hot issues in academic research. To solve these problems, this paper proposes an improved 

regularized adaptive matching Pursuit (IRAMP) algorithm based on LDPC measurement matrix. In this algorithm, 

the LDPC matrix with quasi-cyclic characteristics is used for observation [22], and the number of candidate set 

atoms is automatically adjusted by the adaptive threshold to improve the accuracy of reconstruction and reduce the 

reconstruction time when the signal sparsity is unknown. 
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III. Compressed Sensing of Signals 

 

The reconstruction process of compressed sensing is shown in Figure 1. In the theory, the sampling and 

compression coding of signals take place in the same step, and the signal sparsity is utilized to conduct non-

adaptive measurement coding at a rate far lower than the Nyquist sampling rate. Each measured value is a 

combination function of each sample signal under the traditional theory, that is, a measured value contains a small 

amount of information about all sample signals. The decoding process is not a simple inverse process of coding. 

Instead, the existing reconstruction methods in signal sparse decomposition are used to achieve precise signal 

reconstruction or approximate signal reconstruction with a certain error in the sense of probability. The number of 

measured values required for decoding is far less than the number of samples under the traditional theory. 

 

Compressed 

Sensing
Transmission

x Reconstruction 

on Sparsity

Feature 

Extraction

Features  ̂

 

Noise
 

Fig 1: Signal reconstruction process of CS theory 

 

In the compressed sensing reconstruction algorithm, it is assumed that the original signal x can be sparsely 

represented as 𝜃 in the wavelet domain, 
Nx R , And there exists a set of sparse orthogonal basis 

1 2( , , , )N N N     , then the signal x can be expressed as:  

x                                                                                      (1) 

Where, x  is N  dimensional row vector, 1 2( , , , )T

N    , ,i ix    . 

 

If   is set to be the measurement matrix, then 1 2 N=( , , , )   , and 1, 2, ,( , , , )T

k k k N k    ,

1,2, ,k N ;   is the orthogonal basis dictionary matrix, and the measured value y after compressed sensing 

observation is: 

y x A                                                                        (2) 

Here, y  is M  dimensional row vector, A  is the sensing matrix of size M N , and M N . 

 

The non-correlation between the sparse orthogonal basis and the measurement matrix is defined as: 

1 ,
( , ) max ,k j

k j N
N  

 
                                                                (3) 

Where, 1 ( , ) N    . The smaller ( , )    is, the fewer measurements are required in compressed 

sensing, that is, the less   correlated with  . 

 

If   is K-sparse under a sparse basis   that is not related to the measurement matrix  , the measured value y is 

known and satisfies: 

2( , ) logm C K n                                                                   (4) 

Then its signal recovery can be equivalent to a minimization problem of 0l  norm, C is a constant approximately 2. 

 

When the measurement matrix   satisfies the constraint isometric constraint RIP criterion, the recovery of 

compressed sensing signals can be equivalent to a 1l  norm minimization problem, and then the compressed 

sensing recovery algorithm based on 1l  norm minimization is the optimal solution of solving the normal problem 
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through Equation (5) : 

1
ˆ arg min . .x x s t y x                                                            (5) 

According to Equation (5), an approximate representation of the sparse coefficient in the sparse matrix can be 

obtained. 

 

IV. Improved Adaptive Matching Pursuit Algorithm Based on LDPC 

 

4.1 Construction of LDPC measurement matrix based on finite field 

 

A line i  in finite geometry corresponds to a N  weight vector },,{ 21 iNiii vvv V , When the point j  is on 

the line i , it can be got 1jiv . iV  is called the associated vector of the line i , which has a weight of  . The 

matrix NMH  would be formed by N points, M lines and their associated vectors in finite geometry. 

 

For any finite geometric domain that exists, if there are N  points and M  lines, it can be constructed the vector 

},,{ 21 Nvvv V  on GF (2) corresponding to points. Geometric domain in a straight line corresponds to a 

weight vector, when the first point on the line,. The associated vector, called the line, has a weight of. So points, 

lines and their associated vectors in a finite geometry form a matrix. 

 

The density of the matrix NMH  is MN //   , When   and   are very small relative to N  and M , 

NMH  is a sparse low density matrix, its null space forms the LDPC code. The steps of LDPC measurement 

matrix construction algorithm are as follows: 

 

First, the cyclic transposon matrix A is determined. The H of the quasi-cyclic LDPC code is composed of many 

cyclic submatrices, each of which is a square matrix with the size q q . 

 

Secondly, the basis matrix is constructed 

1 11 12 1

2 21 22 2

0 1

n

n

b

m m m mn

a a a a

a a a a
H

a a a a

   
   
    
   
   
   

                                                     (6) 

Here, (0,1)ija  , 1,2, ; 1,2,i m j n  . 

 

Next, the matrix P  of shift number should be determine.  

                                                                  

11 12 1

21 22 2

1 2

n

n

m m mn

p p p

p p p
P

p p p

 
 
 
 
 
 

                                                              (7) 

Each element of the basis matrix is extended to a square matrix of size q q , element 0 is represented by a zero 

square matrix, and element 1 is represented by a cyclic shift square matrix I, and element  is represented by a 

zero matrix of the corresponding cyclic shift matrix. 

 

Finally, the basis matrix is extended to the check matrix H, Each element of the basis matrix H is replaced by the 
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corresponding cyclic substitution matrix, ( )b ijH p  represents a zero matrix of size q q  or the cyclic submatrix 

( )ijI p  obtained by rotating the identity matrix to the right ijp  times. 

                                                     

11 12 1

21 22 2

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

b b b n

b b b n

b m b m b mn

H p H p H p

H p H p H p
H

H p H p H p

 
 
 
 
 
 

                                              (8) 

 

The girth size in Tanner graph of LDPC codes has a great influence on the performance of LDPC codes, especially 

the short girth with the length 4, so it needs to eliminate the short girth of the check matrix H. Thus the parity 

check matrix of LDPC codes structured in this way would not only be sparse, but also have the system 

characteristics of the cyclic code or quasi cyclic code, which makes it very suitable for hardware implementation. 

 

4.2 Improved adaptive matching pursuit algorithm 

 

4.2.1 Algorithm analysis 

The solution of Equation (5) is an NP-hard problem, which is difficult to solve directly. The matching pursuit 

method provides a powerful tool for the approximate solution of the problem. Based on the selection criterion of 

atoms, it implements the recursively normalizing the set of selected atoms to ensure the optimality of iteration by 

OMP algorithm, so as to reduce the number of iterations. On this basis, ROMP algorithm applies the regularization 

process to OMP algorithm with known sparsity. The difference between ROMP algorithm and OMP algorithm lies 

in that the former first selects multiple atoms as the candidate set according to the relevant atoms, then selects 

some atoms from the candidate set according to the regularization principle, and finally merges them into the final 

support set. The selection process is rapid and effective. 

 

StOMP algorithm is another improved one of OMP algorithm, each iteration can select more than one atom. There 

is no signal sparsity K in the input parameter of this algorithm, so it has unique advantages compared with ROMP 

and CoSaMP. SP algorithm and CoSaMP algorithm introduced the rollback filtering process, so the signal 

reconstruction quality is good, and the reconstruction complexity is low. CoSaMP algorithm is an improvement of 

OMP algorithm, and multiple atoms are selected in each iteration. The difference between CoSaMP and ROMP 

algorithm is that the selected atoms in each iteration of ROMP are always retained, while the selected atoms in 

each iteration of CoSaMP may be discarded in the next iteration. SP algorithm and CoSaMP algorithm are highly 

similar, but the difference is that SP algorithm selects K atoms each time, while CoSaMP algorithm selects 2K 

atoms. 

 

The above algorithms are all based on the known sparsity K, but the signal sparsity is often unknown in practical 

applications. Therefore, the sparsity adaptive matching pursuit (SAMP) algorithm appears. By setting a variable 

step size, the signal sparsity is estimated step by step, and the reconstruction effect is better and the speed is much 

faster than OMP algorithm. On the basis of ROMP algorithm, the RAMP algorithm combines with the adaptive 

idea of SAMP algorithm to automatically adjust the number of selected atoms in the iteration process to reconstruct 

the unknown signal, which can ensure the signal reconstruction quality and reduce the running time. In this paper, 

a cyclic LDPC matrix is constructed for observation. On the basis of RAMP algorithm, the number of selected 

atoms is automatically adjusted in the iteration process to reconstruct the signal with unknown sparsity. It is taken 

the method of phase transformation which can increase the number of atoms gradually, and the same iteration 

process is divided into multiple stages. It is set a variable step size instead of the selected number of atoms, and 

make a backup copy of LDPC matrix content. After each iteration, it will back out of atoms corresponding to zero 

matrix column, and read the backup information of LDPC observation matrix for signal recovery. With the 

increase of step size and support set, the step size is gradually approximating K under the premise of unknown 



 CONVERTER MAGAZINE 

Volume 2021, No. 7 

 

ISSN: 0010-8189 

© CONVERTER 2021 

www.converter-magazine.info 

582 

 

sparsity. In this way, the original signal can be reconstructed accurately and the operation speed of the algorithm 

will be improved. 

 

4.2.2 Steps of IRAMP Algorithm 

The symbols defined are as follows: It is defined t  as the number of iterations. t  is the set of column ordinals 

for iteration t . t  represents the column number found in iteration t . ja  is defined as the column j  of 

compressed sensing matrix A , and tA  represents the set of columns of matrix A  selected by index t . J  is a 

collection of column ordinals, 0J  represents the column ordinals found in each iteration,  ，  stands for the inner 

product of a vector. s and n  represent the transformation phase and step size respectively.   and   represent the 

thresholds for controlling the number of iterations and phase transformation respectively.  

 

Input: Compressed sensing matrix A , 
M NA C  , Measurement vector y x A    ,

My C ,
Nx C , 

Output: Coefficient estimation ̂ of signal sparse representation, Residual error: ˆ
k k kr y A     . 

 

Step 1, Initialization: Initial residual value 0r y , initial step 0n  ,transition stage =1s , the number of 

iterations 1t  , Set of index values 0 =  , 0A  , J  . 

Step 2, Recognition: Calculate the correlation coefficient 1,t ju r a   ,1 j N  ,When the number of non-

zero coordinates is less than n , select all non-zero values in u , When that is greater than or equal to n , select n  

of the maximum values. Set the index values corresponding to the selected values J . 

Step 3, Regularization: Look for a subset 0J  of the set J , J0⊂J, which meet the conditions: ( ) 2 ( )u i u j ,

0,i j J ; Select the subset J0 of all satisfying subsets with the maximum energy 
0 2

J
u . 

Step 4, Backup the contents of LDPC observation matrix  . 

Step 5, Update the observation matrix to ensure the orthogonality between the selected atom and the residual, 

 0 kJ    . 

Step 6, Update the support set: 1 0t t J   , 1t t jA A a  ( 0j J ). 

Step 7, Find the least-squares solution of the equation t ty A   ,  
1ˆ arg min

t

T T

t t t t t ty A A A A y


 


   . 

Step 8, Backtrack atoms in the support set, eliminate errors ones. 

Step 9, Restore the column vector of the observation matrix corresponding to the deletion of atoms, that is 

  1 -k kI      . 

Step 10, Update the residual: 
1ˆ ( )T T

t t t t t t tr y A y A A A A y     . 

Step 11, Threshold   judgment: if nr r   , then let 1s s  , n n s  , and return to step 2, otherwise, 

let nr r , 1t t  , and return to step 8. 

Step 12, Threshold   judgment: if 
2

r  , then the iteration ends, the resulting atoms are used for the final 

signal reconstruction, otherwise, return step 2. 
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V. Experimental Results 

 

5.1 Reconstruction of one dimensional signal  

 

In this paper, OMP algorithm, ROMP algorithm, StOMP algorithm, SP algorithm, CoSaMP algorithm, SAMP 

algorithm, RAMP and IRAM algorithm are compared by MATLAB software. The simulation signal used in the 

experiment is the Gauss random signal with the length 256, and the observation matrix φ is a QC-LDPC matrix 

constructed based on a finite field, with the size of 128×256, that is, the compression ratio is 0.5. The hardware 

configuration of the computer is Intel(R) Core(TM) I7-8565 CPU, 1.8GHz main frequency, 8.00GB memory. The 

software environment is Matlab R2021a under 64-bit Windows10 operating system. 

 

When the sparsity K is equal to 15, the reconstruction results and reconstruction errors of the compressed 

simulation signals of the 8 classes of greedy algorithms are shown in Figure 2-9 respectively. From the simulation 

results, it can be seen that ROMP, StOMP and CoSaMP algorithms have large reconstruction errors, and the sparse 

signals obtained after reconstruction generate a large number of error signals compared with the original signals. 

OMP algorithm, SP algorithm, RAMP algorithm and SAMP algorithm have little difference in reconstruction 

effect. IRAMP algorithm has the best reconstruction effect compared with other algorithms, and the reconstructed 

signal is closest to the original signal. 

 

 
Fig 2: Simulation result of OMP algorithm 
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Fig 3: Simulation result of ROMP algorithm  

 

 
Fig 4: Simulation result of StOMP algorithm  

 

 
Fig 5: Simulation result of CoSaMP algorithm 
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Fig 6: Simulation result of SP algorithm 

 

 
Fig 7: Simulation result of SAMP algorithm 

 
Fig 8: Simulation result of RAMP algorithm 
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Fig 9: Simulation result of IRAMP algorithm 

 

5.2 Experimental analysis 

 

In the case of different sparsity K, the reconstruction accuracy of the 8 greedy algorithms is shown in Figure 10. 

Under the condition of different sparsity, each algorithm is iterated for 1000 times, and when the residual is less 

than 1E-6, the original signal is considered to have been successfully reconstructed. 

 

 
Fig 10: Reconstruction accuracy with different sparsity 

 

As can be seen from Figure 10, ROMP algorithm has the lowest successful reconstruction rate. OMP algorithm is 

close to StOMP and CoSaMP algorithm, and better than ROMP algorithm. When the sparsity K is 45, the 

probability of successful reconstruction of OMP and CoSaMP algorithm is approximately equal to 45 percent. 

When the sparsity K is 50, the probability of successful reconstruction of OMP and StOMP algorithms is 

approximately equal to 25 percent. The successful reconstruction rate of SP algorithm is better than OMP, StOMP 

and CoSaMP algorithm. SAMP algorithm is superior to SP algorithm when the sparsity K is less than 60. However, 

when the sparsity K is greater than 60 and less than 65, SAMP algorithm is slightly worse than SP algorithm. But 

when the sparsity K is greater than 65 and less than 70, the successful reconstruction rate of both algorithms is 

basically equal. 

 

The successful reconstruction rate of RAMP and IRAMP algorithm is significantly higher than that of other 
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algorithms, and the success rate of IRAMP algorithm is slightly higher than that of RAMP algorithm. When the 

sparsity K equals 65, it has a successful reconstruction probability of about 35 percent. This is because the 

improved IRAMP algorithm sets a variable step size to replace the number of selected atoms, and at the same time, 

the contents in the LDPC observation matrix are backed up. After each iteration, the matrix column corresponding 

to the eliminated atoms in the traceback is cleared to zero, and the information of the backup LDPC observation 

matrix is read for signal recovery. With the increase of step size and support set, the step size is gradually 

approximating K under the premise of unknown sparsity, which makes the success probability of rebuilding the 

original signal higher. 

When the sparsity K is different, the signal reconstruction of 8 greedy algorithms is carried out for 1000 times 

respectively. The total running time of each algorithm varies with the sparsity, as shown in Figure 11. 

 

 
Fig 11: Reconstruction accuracy with different sparsity 

 

As can be seen from Figure 11, in terms of reconstruction time, ROMP and StOMP algorithms are the fastest, 

followed by OMP, SP and RAMP algorithms. When the sparsity K is smaller than 35 or K is greater than 55, the 

reconstruction time of CoSaMP algorithm is close to that of ROMP algorithm. When K is greater than 35 and less 

than 55, SAMP algorithm takes the longest reconstruction time, the reason is that SAMP algorithm needs to set a 

variable step size on the premise of unknown sparsity to estimate signal sparsity step by step, which makes the 

operation time long. IRAMP algorithm is located in the middle and takes longer time to reconstruct than RAM 

algorithm. This is because in order to ensure the reconstruction accuracy, after each iteration, IRAMP algorithm 

needs to not only backtrack the deleted atoms, and carry out the corresponding matrix column zero-clearing 

operation, but also read the contents of the backup LDPC matrix, which will increase the amount of computation 

and operation time. Therefore, the operation time of IRAMP algorithm is longer than that of RAMP algorithm. 

 

VI. Conclusion 

 

In this paper, various classical reconstruction algorithms of compressed sensing theory and the research status in 

recent years were deeply studied. Aiming at the problem of unknown signal sparsity in practical application, 

RAMP algorithm was improved. An improved adaptive regularized adaptive matching pursuit (IRAMP) algorithm 

based on LDPC measurement matrix is proposed. In the case of unknown signal sparsity, it uses the LDPC matrix 

with quasi-cyclic characteristics for observation, and simple and effective regularization process for filtering the 

atomic library. At the same time, the signal sparsity is estimated adaptively by setting two iteration thresholds, so 

that signal reconstruction can be realized for signals with unknown sparsity. The experiment results show that the 
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step size can gradually approach the sparsity under the same test conditions. Thus the original signal can be 

reconstructed accurately, and the reconstruction time can be reduced. In addition, because of using matrix with 

quasi-cyclic LDPC characteristics, it can not only save the observation matrix storage space, but also reduce the 

decoding complexity, which is helpful for hardware implementation. These provide a better implementation 

method for the application of compressed sensing theory. 
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