
 CONVERTER MAGAZINE

Volume 2021, No. 7

ISSN: 0010-8189

© CONVERTER 2021

www.converter-magazine.info

781

Research and Implementation of Communication between OCPP Client and

Charging Station Management System

Mingming Du, Likun Cui*, Xuyong Feng, Chengxiang Wang

College of mechanical engineering, Shaanxi University of Technology, Hanzhong, China

*Corresponding Author.

Abstract

The ability to exchange information between software and hardware systems is a key factor in the development of

charging pile systems. For a long time, the development of charging station has been seriously affected by the

standard of charging interface, and it has become the main obstacle to the development of charging station. In view

of the limitation of communication between charging station and backend management system, we design a

communication system between charging station and backend management system based on the global open

communication protocol standard OCPP (Open Charge Point Protocol). In this paper, the framework of the charging

point client is built based on JavaScript language, so that the framework can run reliably and send specific

commands to the server. Then the charging station management system is built using the main technologies such as

MYSQL 5.7 database, Apache-maven project building and management tools, and Java development, so that the

built management system can respond to the commands sent by the client in a fast and stable manner. The verification

of the built system shows that the two ends can interact with each other quickly and reliably and respond accurately.

The experiments show that the interaction framework can solve the difficulties arising from the communication

between charging networks today and support the interconnection between charging stations and back-end systems.

The framework is capable of solving various difficulties arising from the communication between private charging

networks and aims to support the interconnection between charging stations and backend systems, providing an

effective interaction framework for true interconnection in the future.

Keywords: OCPP, Central System, charging Station, back-end systems, interconnection

Ⅰ. Introduction

OCPP provides a unified communication scheme between charge station (CS) and any Central System also known

as charge station management system (CSMS). This protocol architecture supports the interconnection of any charge

service provider's charge station management system with all CS stations [1] . As of today, OCPP is currently used

by charge network operators and service providers in more than 50 countries to manage thousands of CSs, thus

becoming the de facto open standard protocol for charge network communication in Europe and parts of the US. The

core advantages of OCPP are: (1) it provides a good support to charge station owners to use a flexible approach to

select and switch their network operators, which improves the utilization of charge stations and avoids their idleness;

(2) its basic function is to provide communication between charge stations and network service providers, but it can

also provide services to the grid; (3) it enables the provision of a unified information interface at charge stations, and

consistent roaming charge services, which can directly serve the purpose of encouraging users to purchase electric

vehicles[2].

Ⅱ. OCPP 1.6 Advantages and System Framework

OCPP v1.6 is the most complete version up to now, it is based on the successful implementation of version 1.5 for

many years. OCPP 1.6 introduces several new features, including smart charge, and supports the JSON application

format based on Web Sockets after supporting the SOAP format [3,4]. Easy to parse and generate by machines, fast

transmission speed, and the number of programming languages supporting the JSON format, so the JSON format is

rapidly becoming one of the most popular data exchange formats on the Web [5,6]. Fig.1 compares the similarities

 CONVERTER MAGAZINE

Volume 2021, No. 7

ISSN: 0010-8189

© CONVERTER 2021

www.converter-magazine.info

782

and differences between the two versions. It can roughly show that OCPP version 1.6 has improved and added more

features than OCPP version 1.5.

Fig 1: The Differences between OCPP 1. 6 And OCPP 1. 5

2.1 CS and CSMS interaction framework

In OCPP, a CS is used as a physical system for EV charge, and a CS can have one or more EVSEs (Electric Vehicle

Supply Equipment). Inside the OCPP, EVs are used as part of a CS that can supply energy to one EV at the same

time. The connector shown in Fig.2 below is what is commonly referred to as a power outlet that can be operated

and managed independently on the CS, in short, it corresponds to a single physical connector. In some cases, electric

vehicles may have multiple physical outlet types /cable/connector arrangements to facilitate different types of

vehicles (e.g, four-wheeled electric vehicles and electric motorcycles). This setup is referred to as a 3-layer model[7].

Fig 2: 3-tier model as used in OCPP

2.2 JSON-based applications in OCPP

JSON (JavaScript Object Notation) [8-10] is a data format based on the data types of the JavaScript programming

language. JSON plays a key role in web applications today. Given that JSON is a language that is easily understood

by developers and machines alike, it has become the most popular format for sending application programming

interface (API) requests and responses over the HTTP protocol [11].

With the introduction of OCPP 1.6, there are two options for OCPP, SOAP and JSON. To avoid confusion when

communicating, different suffixes -J and -S are used to denote JSON or SOAP. For example, for JSON, this is denoted

as OCPP-J; for SOAP, this is denoted as OCPP-S. The version-specific terms are OCPP1.6J or if the system supports

both JSON and SOAP, mark this OCPP1.6JS instead of just OCPP1.6. In future versions of OCPP 2.0, it is officially

 CONVERTER MAGAZINE

Volume 2021, No. 7

ISSN: 0010-8189

© CONVERTER 2021

www.converter-magazine.info

783

clear that only the JSON data format is supported, which is why the JSON data transfer format is used in this study.

2.3 Web socket-based communication

Web Socket [12] allows asynchronous full-duplex communication between web-based (i.e., JavaScript-based)

applications and web servers. Web Socket was originally standardized as part of HTML5, but has now been separated

from HTML5 and developed independently [13]. For a connection between a charge station and a charge station

management system using OCPP-J, the CSMS acts as a Web Socket server and the charge station acts as a Web

Socket client. To initiate a Web Socket connection, the charge station needs a URL to connect to. Thereafter, this

URL is called the "connection URL". This connection URL is specific to the charge station. The charge station's

connection URL contains the charge station identifier so that CSMS knows which charge station the Web Socket

connection belongs to.

Ⅲ. Operations Initiated by Charge Station and by Central System

Charging Station is a physical system for charging electric vehicles. A charging station has one or more electric

vehicles. The role of the Central System is to manage the charging stations and has the information to authorize users

to use their charging stations. That's why Central System is called Charging Station Management System (CSMS).

For the connection between a charging station and a charging station management system (CSMS) using OCPP-J,

the CSMS acts as a Web Socket server and the charging station acts as a Web Socket client.

3.1 Operations initiated by charge station

3.1.1 Authorize request

According to OCPP 1.6, the interaction between the client and the server is shown in Fig.3 below to request and

respond to each other. The functional use case is that a charge session can be initiated on the CS by the idToken

generated by the CSMS server. When a driver needs to charge on a CS without RFID capability, the driver can send

a start request to the CSMS using the application. The CSMS will determine an idToken and can generate a unique

ID to be used as the charge idToken, then the CSMS will send a start charge request with the idToken to the CS, and

then the CS The CSMS then sends a start charge request to the CS with the idToken, and then the CSMS sends a

start charge response, accepting the charge request from the CSMS.

Fig 3: Authorize Request

3.1.2 Boot notification

Upon power-up, the charge station will send a request for a boot notification to the charge station management system

containing information about its configuration (e.g., version, vendor, etc.). The charge station management system

shall respond to indicate whether to accept the charge station. Each time a charge station is started or restarted, it

shall send a boot notification request. When the charge station management system receives a request for a charge

station boot notification, the charge station management system responds to the request with the current time, interval

and status of the charge station management system, of which there are three main types of status: Accepted, Pending,

and Refused. When the charge station management system responds with an "Accepted" start notification response,

the charge station will adjust the heartbeat interval according to the interval of the response field. If the charge station

management system returns a status of "Rejected", the charge station will not send any OCPP messages to the charge

station management system until the above retry interval expires.

 CONVERTER MAGAZINE

Volume 2021, No. 7

ISSN: 0010-8189

© CONVERTER 2021

www.converter-magazine.info

784

During this interval, the charge station may not reach the charge station from the charge station management system.

For example, it may shut down its communication channel or turn off its communication hardware. The charge

station management system may also close the communication channel to free up system resources. When denied,

the charge station will not respond to any messages initiated by the charge station management system. This is shown

in Fig.4.

Fig 4: Boot Notification Request

3.1.3 Start transaction

This use case describes the different moments a Charge Station can start a transaction (send Transaction Event

Request with event Type = Started), depending on the configuration of the Charge Station. As shown in Fig.5.

Fig 5: Start Transaction Request

3.2 Operations initiated by central system

3.2.1 Reset

In order for the CSMS to request a charge station to reset itself while no charge is in progress, this use case describes

how the CSMS can request a charge station to reset itself by sending a "Reset request". For example, if a charge

station is not functioning properly, it may be necessary for the CSMS to send a reset request to ask the station to reset

itself, and for the CSMS to request a "hard reset" or a "soft reset" to reset the station. The charge station responds

with a reset response, which includes whether the station is attempting to reset itself. When a reset request is received,

the charge station shall send a stop charge response. If the charge station cannot receive a Stop Transaction .conf

from the charge station management system, it shall queue the Stop Transaction request in the queue.

Upon receiving a soft reset, the charge station shall gracefully stop the charge in progress and send a Stop Transaction.

it shall then restart the application software (if possible, otherwise reset the processor/controller). On receiving a

hard reset the charge station should restart (all) hardware, it does not need to gracefully stop the ongoing charge.

This is shown in Fig.6.

Fig 6: Reset Request

3.2.2 Clear cache

If the CSMS sends a clear cache request, the charge station shall attempt to clear its authorization cache and the

charge station shall send a clear cache response message indicating whether the charge station is able to clear its

authorization cache. The charge station shall send a clear cache response message with status Accepted if it is able

to clear its authorization cache, and a clear cache response message with status Rejected if the charge station is unable

to clear its authorization cache. This is shown in Fig.7.

 CONVERTER MAGAZINE

Volume 2021, No. 7

ISSN: 0010-8189

© CONVERTER 2021

www.converter-magazine.info

785

Fig 7 Clear Cache Request

3.2.3 Clear charging profile

The purpose of this functional use case is to clear some or all of the charging profiles. If the CSMS wants to clear

some or all of the charging profiles previously sent to the charge station, the CSMS sends the clear charging profile

request to the charge station. The charge station responds with a "Clear Charging Profile Response" to specify

whether it is able to process the request in the status. The CSMS can use this message to clear a specific charging

profile, indicated by the ID (specifying the ID of the EVSE for which the charge profile is to be cleared; an EVSE

ID of 0 is used to specify the charging profile for the entire charge station. Among the status responses are: the

request has been accepted and will be executed; and the charging profile matching the request could not be found.

This is shown in Fig.8 below.

Fig 8: Clear Charge Profile Request

Ⅳ. Communication between OCPP-Based Client and Server

The server environment is set up on Ubuntu 18.04.5 operating system. The server runs on the following tools: JDK11,

Apache Maven 3.6.0, MySQL 5.7 and other major environment dependencies. According to the OCPP time zone

requirements, first of all, we have to make sure that the time zone of MySQL database and the time zone of the server

are the same, both use UTC, so we should set the time zone of MySQL to UTC, then to make sure that we can access

MySQL database smoothly through TCP, we have to set the following initialization settings for MySQL database

4.1 Server-side environment construction and implementation

After installing the required dependencies on the server, clone the latest Steve 3.4.3 package via git clone

https://github.com/RWTH-i5-IDSG/steve. It is an open platform with outstanding advantages in terms of protocol

authentication. It is an open platform and has outstanding advantages in terms of protocol authentication. After

cloning Steve, basic configuration are done in main.properties (database configuration; correct IP address from local

to server; configuration of web interface credentials). This is important because when a software project is compiled

and packaged[14], the jar package to run Steve's project is generated. The screen that runs successfully is shown in

Fig.9 below.

Fig 9: Mvn package run successfully screen

After compiling the application included in Steve with Apache Maven tools and configuring the resulting runnable

jar package, you can start the application to run Steve with this command “java -jar target/steve.jar” on the operating

terminal. After running Steve successfully, type http://127.0.0.1:8080/steve/manager/hom into Google Chrome and

 CONVERTER MAGAZINE

Volume 2021, No. 7

ISSN: 0010-8189

© CONVERTER 2021

www.converter-magazine.info

786

will enter the server login screen.

At this point, the Web Socket server has been built, and the Web Socket client can communicate based on OCPP in

combination with the built Web Socket client.

4.2 Client side construction and implementation

4.2.1 Construction of the client

The purpose of building the charge station client based on OCPP 1.6 protocol is to enable the charge station

management system and charge stations to connect and communicate with each other normally. In OCPP, the OCPP

client (charge station) is the client of Web Socket that acts as the OCPP server (charge station management system).

For the functional use cases of OCPP version 1.6 and the generality of the language, the client of this paper is built

mainly based on JavaScript language for code writing and debugging, and more and more JavaScript applications

create a new technology and business model for program building and deployment. Due to its popularity and

shortcomings, companies and researchers have tried to tame JavaScript via program analyses [15-18], sub-

language[19-21].This paper builds the client based on the Ubuntu 18.04.5 system environment distributed under

embedded Linux [22-24].

The construction of the client side of this paper also involves the operation of the UI interface, and the main

technology used is mainly HTML hypertext markup language, Modern browsers are quite tolerant of HTML errors

and employ heuristics to silently correct them, although pages may render more slowly because of these error-

correcting heuristics [25]. With the increasing popularity of JavaScript, there is a growing need for tools to help

programmers with tasks such as program comprehension and maintenance [26,27], bug detection and localization

[28,29], refactoring [30,31], and detecting and preventing security vulnerabilities [32-34], especially in server-side

Node.js applications, and as Node proof of popularity, the npm package repository has recently surpassed Maven

Central and Ruby Gems, with over 132,000 available packages and more than 250 new packages added every day[35].

This is why node.js is used in conjunction with JavaScript. The OCPP Web Socket client operating terminal interface

as shown in Fig.10.

Fig 10: OCPP Web Socket client terminal interface

4.2.2 How the client works

The communication between the client and the server is based on Web Socket for specific communication. According

to the Web Socket server after running successfully, change the URL to ws://127.0.0.1:8080/steve/WebSocket/ in the

Web Socket client configuration file. Charge Station Management System, after the change, the client and server can

make a normal connection. Fig.11 below show the interface of the server after successful connection.

 CONVERTER MAGAZINE

Volume 2021, No. 7

ISSN: 0010-8189

© CONVERTER 2021

www.converter-magazine.info

787

Fig 11: The interface of successful connection and Server main page

In this interface, ocpp1.6J represents the communication protocol is applied OCPP1.6, J represents the use of JSON

on Web Socket for OCPP communication, so ocpp1.6J means that this communication is implemented in Web Socket

using JSON of OCPP1.6.

After the OCPP client is successfully built, it is connected with the OCPP server built before, and then the

communication between OCPP client and OCPP server is carried out to verify the goodness of OCPP communication.

OCPP client, i.e. charge station, is the Web Socket client of OCPP server, i.e. charge station management system,

and sends the command through the operation interface, and then The OCPP client displays the specific information

of the sent command on the terminal interface, after that the command will be sent to the OCPP server side, and the

OCPP server side will respond accordingly to the request sent by the OCPP client.

4.3 OCPP-based requests from clients

4.3.1 Authorize request

According to the OCPP description, if normal communication operations are performed on the Web Socket client

and Web Socket server side, an authorization request must be sent from the client side (charge station side), and a

series of command operations can be performed only when the authorization response from the server side is accepted.

Fig.12 shows the interface of sending request from the client side.

Fig 12: Client request page

4.3.2 Boot request

When the server-side authorization response is accepted, it means that the charge station has been successfully

registered with the charge station management system and can send and receive a series of commands with the

server-side and respond accordingly. A start request is sent to the charge station management system, and then the

information about the charge station between the client and the server is checked to see if it matches.

The start request is a request sent from the client (charge station) to the server (charge station management system),

 CONVERTER MAGAZINE

Volume 2021, No. 7

ISSN: 0010-8189

© CONVERTER 2021

www.converter-magazine.info

788

and then a response is sent to the charge station by whether the charge station management system accepts the start

request from the charge station. The screen that runs successfully is shown in Fig.13 below.

Fig 13: Server-side charge station information interface

The information about the charge station displayed by the server and the charge station information contained in the

boot request sent by the client in the terminal interface are consistent, indicating that the charge station can perform

normal boot.

4.3.3 Transaction

This functional use case is sent to the transaction station management system client through the Web Socket client

UI side via the client terminal to complete the transaction request, and then the charge station management system

will respond to a request sent from the charge station client whether it is accepted or not, as shown in Fig.14 below

after the client request and after the server response.

Fig 14: Transaction request and accepting transaction requests

What is shown on the server side in Fig.14 indicates that the charge station with ID ChargePoint1 has been accepted

and transaction has started.

4.4 OCPP-based requests from the server side

4.4.1 Reset

This request is sent from the server side (charge station management system) to the client side (charge station). The

purpose of this use case is to reset a charge station, and the server side will receive a status response (accepted,

rejected, scheduled) from the charge station, and the reset request includes both hard and soft reset. Fig.15 shows the

response received after the request operation sent by the charge station management system.

 CONVERTER MAGAZINE

Volume 2021, No. 7

ISSN: 0010-8189

© CONVERTER 2021

www.converter-magazine.info

789

Fig 15: Reset request and response

The specific request time and task name “Reset” can be known from Task Details in the figure, and the Task Result

can tell that ChargePoint1 has accepted the reset request sent by the charge station management system.

4.4.2 Clear cache

The purpose of this functional use case is for the charge station management system to request the charge station to

clear its own authorization cache by sending a clear cache request to the charge station, and to check whether the

authorization cache can be cleared by the response from the charge station, as shown in Fig.16 below for the specific

communication details.

Fig 16: Clear cache request and response

In the same way, the Task Details in this screen can tell the specific task name (Clear Cache) and the request time,

etc. The Task Result shows that ChargePoint1 responded to the cache clear request sent by the charge station

management system and the status is accepted.

4.4.3 Clear charging profile

The main purpose of this functional use case is that the charge station management system can send this request to

the charge station to clear some or all of the charging profiles previously sent to the charge station, as shown in detail

in Fig.17.

 CONVERTER MAGAZINE

Volume 2021, No. 7

ISSN: 0010-8189

© CONVERTER 2021

www.converter-magazine.info

790

Fig 17: Clear Charging Profile request

The Task Details on this screen shows the specific task name (Clear Charging Profile) and time, etc. The Task Result

shows that ChargePoint1 has responded to the Clear Charging Profile sent by the charge station management system

and the status is accepted.

Fig.18 below shows the breakdown of the request tasks completed by the charge station management system.

Fig 18: Request Tasks Records

Ⅴ. Conclusion

Based on the increasingly important role of OCPP in the communication between charging station and charging

station management systems, the framework of charging station client operation and the framework of backend

management system were built on Ubuntu 18.04 operating system under Linux using JavaScript development

language, project building tools and database. The developed framework has been verified by several experiments,

which proved that the designed system is stable and responsive, and has achieved the expected design goals. At

present, the framework is simulated and validated, and the shortcoming is that it is not ported to ARM industrial

control motherboard for actual operation, and There is no set of physical. I hope that the communication protocol

can form an international standard as soon as possible to promote the development of charging piles in all countries.

The future development of car charging stations will definitely break the communication difficulties, and charging

stations around the world can be interconnected in the real sense.

Acknowledgements

This research was supported by National Natural Science Foundation of China (Grant No. 51706128).

References

[1] OCA, “Open charge point protocol 1.6,” Open Charge Alliance, Duiven, The Netherlands, Tech.

Rep.2015.

[2] OCA, “Standarization of OCPP at OASIS and IEC,” Open Charge Alliance,

 CONVERTER MAGAZINE

Volume 2021, No. 7

ISSN: 0010-8189

© CONVERTER 2021

www.converter-magazine.info

791

http://www.openchargealliance.org/news/, last access August 2016, Tech. Rep. July 2016.

[3] Z.S. Wen, R.W. Yi, H.B. Yao, “Real-time Web application solution based on WebSocket,” Computer

Knowledge and Technology, vol. 08, no. 6, pp. 3826-3828, 2012.

[4] J. Gao, H.C. Duan, “Research on JSON data transmission efficiency,” Computer Engineering and Design,

2011.

[5] W. Zhao, X.W. Deng, R.L. Fu, et al., “A JSON format-based data transmission method for network

information security system,” Journal of Communication University of China (Natural Science Edition),

vol. 27, no. 3, pp. 22-28, 2020.

[6] G. Langdale, D. Lemire, Parsing Gigabytes of JSON per Second. The VLDB Journal, vol. 28, no. 6, pp.

941-960, 2019.

[7] https://www.openchargealliance.org/protocols/ocpp-201/

[8] T. Bray, “The JavaScript Object Notation (JSON)Data Interchange Format,” 2014.

[9] Internet Engineering Task Force (IETF). The JavaScript Object Notation (JSON) Data Inter change

Format. https://tools.ietf.org/html/rfc7159,March 2014.

[10] ECMA, “The JSON Data Interchange Format,” http://www.ecma-international.org/

[11] F. Pezoa, J.L. Reutter, F. Suarez, et al., “Foundations of JSON Schema.” International Conference on

World Wide Web. International World Wide Web Conferences Steering Committee, 2016.

[12] http://WebSocket.org/

[13] Y. Furukawa, “Web-based control application using WebSocket,” Web-Based Control, 2011.

[14] A. Arcuri, J. Campos, G. Fraser, “Unit Test Generation During Software Development: EvoSuite Plugins

for Maven, IntelliJ and Jenkins,”// 2016 IEEE International Conference on Software Testing, Verification

and Validation (ICST). IEEE, 2016.

[15] R. Chugh, J.A. Meister, R. Jhala, et al., “Staged information flow for javascript,”// Proceedings of the

2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009,

Dublin, Ireland, pp. 15-21, 2009.

[16] S. Guarnieri, B. Livshits, "GATEKEEPER: mostly static enforcement of security and reliability policies

for javascript code." USENIX Association, 2009.

[17] A. Guha, S. Krishnamurthi, T. Jim, “Using static analysis for Ajax intrusion detection,”// Proceedings of

the 18th International Conference on World Wide Web, WWW 2009, Madrid, Spain, April, pp. 20-24,

2009. DBLP, 2009.

[18] S.H. Jensen, A. Møller, P. Thiemann, “Type Analysis for JavaScript.” Springer-Verlag, 2009.

[19] D. Crockford, ADSafe, http://www.adsafe.org

[20] Facebook. FBJS, http://wiki.developers.facebook.com/index.php/FBJS

[21] M.S. Miller, M. Samuel, B. Laurie, et al., “Caja Safe active content in sanitized JavaScript.” 2008.

[22] K.Z. He, “Design and implementation of data communication and processing system based on ARM

Linux,” Beijing Jiao tong University, 2009.

[23] S.Y. Fan, “Analysis on the construction principles and applications of Linux operating system,” China

New Telecommunications, vol. 22, no. 15, pp. 120, 2020.

[24] W.L. Lei, X.C Ren, Y. Gao, “Design of instant communication system based on Android platform,”

Modern Electronics Technique, vol. 38, no. 448, pp. 30-33, 2015.

[25] S. Artzi, A. Kiezun, J. Dolby, et al., “Finding Bugs in Web Applications Using Dynamic Test Generation

and Explicit-State Model Check-ing,” IEEE Transactions on Software Engineering, vol. 36, no. 4, pp.

474–494, 2010.

[26] M. Madsen, B. Livshits, M. Fanning, “Practical Static Analysis of JavaScript Applications in the

Presence of Frame-works and Libraries,” European Software Engineering Conference and the

Symposium on the Foundations of Soft-ware Engineering (ESEC/FSE), 2013.

[27] M. Schaefer, M. Sridharan, J. Dolby, et al., “Effective Smart Completion for JavaScript,” Technical

Report RC25359, IBM Research, 2013.

[28] S. Artzi, J. Dolby, F. Tip, et al., “Fault Localization for Dynamic Web Applications,” IEEE Transactions

on Software Engineering, vol. 8, no. 99, pp. 1-1, 2010.

 CONVERTER MAGAZINE

Volume 2021, No. 7

ISSN: 0010-8189

© CONVERTER 2021

www.converter-magazine.info

792

[29] V. Kashyap, J. Sarracino, J. Wagner, et al., “Type refinement for static analysis of JavaScript,” Acm

Sigplan Notices, vol. 49, no. 2, 17-26, 2013.

[30] A. Feldthaus, A. Møller, “Semi-Automatic Rename Refac-toring for JavaScript,” In Proc. ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), 2013.

[31] A. Feldthaus, T. Millstein, A. Møller, M. Sch äfer, and F. Tip, “Tool-supported Refactoring for

JavaScript,” In Proc. ACMSIGPLAN Conference on Object-Oriented Programming, Sys-tems,

Languages, and Applications (OOPSLA), 2011.

[32] S. Guarnieri, B. Livshits, “GateKeeper: Mostly Static enforcement of Security and Reliability Policies

for JavaScript Code,” USENIX Association, 2009.

[33] A. Møller, M. Schwarz, “Automated detection of client-state manipulation vulnerabilities,” Proceedings

- International Conference on Software Engineering, vol. 23, no. 4, pp. 749-759, 2012.

[34] O. Tripp, M. Pistoia, P. Cousot, et al., “Accurate and Scalable Security Analysis of Web Applications,”

2013.

[35] M. Madsen, F. Tip, O. Lhoták, “Static analysis of event-driven Node.js JavaScript applications,” ACM

SIGPLAN Notices, vol. 50, no. 10, pp. 505-519, 2015.

