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Abstarct 

 

The main goal of this study is to look at how a fish that lives on the bottom eats in shallow lakes 

to see how healthy the ecosystem is. In this study, we argue that the way benthic fish hunt for 

food could be used to figure out how healthy shallow lake ecosystems are right now. In shallow 

lakes, the water may change from clear to cloudy, with sediment resuspension caused by 

benthivores eating benthic invertebrates. The giving-up-density (GUD) of benthic fish foraging in 

experimental patches may affect shallow lake ecosystems. GUD predicted bream's maximum 

height, indicating that short-term behaviour predicted long-term growth. Benthic fish differed 

across adjacent rich and poor patched but not between micropatches inside the same feeding 

patch. Benthic fish forage between our patch dimension and the tiny patch scale.Even though 

they are just a first step, the methods presented here should help estimate the likelihood of 

environmental state transitions and find the right steps to take to stop them. 
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1. INTRODUCTION 

 

Foraging is one of the most important things animals do to stay healthy. Conventional theory says 

that the best way to find food is to maximise the rate of energy gain over time(MacArthur)(Pyke, 

1984)(Stephens, 1986). Many models are based on the idea that animals can make the best 

decisions about food because they know everything about their environment. The marginal value 

theory(Charnov, 1976)says that animals should leave patches at the same rate they stop 

harvesting. This means that animals know their reinforcing the fact intake rate and can judge the 

quality of their current patch right away. This last idea isn't true, especially for hunters who look 

in different places for hidden prey. Instead, animals may use basic methods, such as spending the 

same amount of time on each patch of food, no matter how much food is there, or judging the 

patch's quality based on samples of food found there. 

 

Underwater acoustic systems, like single-beam, dual-beam, split-beam, and multi-beam echo 

sounders, as well as acoustic cameras are often used to keep an eye on fish and other objects in 

saltwater and freshwater surroundings(Moursund, 2003)(Graham, 2004)(Simmonds, 2005 

(Holmes, 2006 (Stanton, 2012) (Rudstam, 2012). In recent years, improvements in acoustic 

technology, deployment methods, and analysis software have made this survey method more 

effective(Koslow, 2009) (Godo, 2014)(Martignac, 2015). These systems can be used in either 

mobile study mode or fixed survey mode, depending on how they are set up. A common way to 

figure out how many fish are in mid-water is to use mobile survey systems with a transducer on 

the hull that points down. A big benefit of this survey method is that it can take samples from a 

lot of places quickly and often. Systems that operate in a stationary survey mode and use fixed-
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location and side-looking sonar techniques can collect information with time scales of seconds or 

sub-seconds to find, count, track, and identify demersal and benthic fish. Because DIDSON had a 

wider field of view than other sonars, a high spatial resolution, and a high frame carrier frequency 

(Belcher, 2001)(Martignac, 2015), it was used in a lot of different studies, especially for 

estimating and sizing the number of anadromous fish (Boswell, 2008) (Burwen,2010) and 

watching how fish behaved around fixed (Han, 2009) (Makabe,  2012). Concerning the 

performance of the acoustic equipment mentioned above, it is important to remember that 

observations with fine temporal scales (i.e., stationary survey mode) tend to cover a small area, 

while observations that cover a large area (i.e., mobile survey mode) tend to have coarse or 

limited temporal scales. Existing acoustic systems can't get around the limitations of underwater 

communication observations in terms of time-space media attention and resolution for ecological 

application areas (Godo, 2014). 

 

For ecosystems to work well, we need to be able to accurately identify important drivers and use 

reliable methods to measure and predict how these drivers will affect the system. Most of the 

time, people think that natural systems would acclimatise to a gradual change in the environment 

by slowly changing their state. Small changes in drivers, on the other hand, can sometimes cause 

abrupt changes between ecology states (Scheffer, 2001). Regime shifts have been seen in both 

land and water systems, and they can be caused by both external and internal factors, such as 

climate and trophic interactions (Schmitz, 2006) (Persson, 2007). In a recent paper, Carpenter et 

al. (2008) gave a number of leading indicators that can be used to predict regime shifts in systems 

with complicated trophic interactions. Carpenter et al. (2008) used conventional variation, return 

rates, and variance spectroscopy in phytoplankton abundance to test the utility of regime shift 

metrics in the context of top predator-induced regime transitions. All of these indicators, though, 

require frequent sample size and a focus on the response variable at the base of the food web, 

which is a few trophic levels below the driver. One way to do this would be to make indicators 

that require less sampling and focus on the driver. 

 

When people and/or their resources can't be seen or measured, behavioural indicators can be used 

to figure out the state and size of a population. This idea is based on the idea that behavioral 

genetics is flexible and adaptable and that animals respond in a predictable way to changes in 

their surroundings like in optimality theory. 

 

By putting together animal behaviour observations and a theoretical foundation, it is possible to 

figure out how an animal values things like risk and the availability of resources. In this study, 

we argue that ecosystem health and resilience can be measured using both population monitoring 

and behavioural indicators. If the way a community works depends on what decisions the 

members of a single keystone species make, then watching the behaviour and attitude of 

representatives of that species should give you an idea of how the community is doing and how it 

works. 

 

We show this with an example from shallow lakes, where the number of certain key players 

determines the ecosystem's state and how likely it is to change states. Shallow lakes are one of 

the best examples of ecosystems with different states. They can be clear and dominated by 

submerged plants, or cloudy and dominated by phytoplankton (Scheffer and van Nes, 2007). 

Because each state may be stable and kept that way by different feedback processes, it is hard to 

make changes from one state to another (Scheffer, 2001). So, it is especially important to stop 

unwanted changes, because biological values could be lost forever, and it would be expensive to 

bring them back. We argue that keeping an eye on the actions of key players, in this case, 
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benthic-feeding fish in shallow lakes, can give first-hand information about the state of an 

ecosystem. This could then be used to help slow changes in system state and stop bad regime 

shifts. 

 

1.1 The behavior of benthivorous fishforaging 

 

It is well known that man-made macroinvertebrates habitats help fishing resources and the 

management of coastal fisheries. There have been a lot of artificial reef projects in more than 50 

countries, mostly in Japan, France, the U.S., and Spain (Lindberg and Seaman, 2011). In 1973, 

Taiwan's government started a long-term plan to build and use artificial islands to increase 

fishing resources and commercial fishing. Over 220,000 different types of artificial reefs have 

been put in place at 88 locations over the past almost 40 years (Fishery Administration, Taiwan, 

2017). Underwater acoustic devices like side-scan sonar were used to study these artificial reef 

sites in a systematic way so that an effective administrative and management system could be 

made (Tian, 2011)(Fishery Administration, Taiwan, 2012). 

 

When there are a lot of food sources on the bottom and the water is clear, benthic fish may use 

their eyesight to find food on the surface of the silt. As a way to avoid being eaten by predators, 

many species of benthic macroinvertebrates have developed ways to live in soil particles, such as 

efficient ways to take in oxygen. So, when there are more fish looking for food, there will be less 

prey that is easy to see. This will force benthic fish to look for food deeper in the substrate. For 

some fish, like bream, carp, and gizzard shade, this means filtering through a lot of silt with their 

gill rakers to get food particles. If food pieces are interred deeper in the sediment, it takes longer 

for animals to find them (Fig. 3), and more sediment is moved to find each piece of food, which 

causes more sediment to be stirred up (Zambrano, 2001). When there isn't enough food, there will 

be a lot of resuspending of particles and a rise in water turbidity. 

 

Several studies show how important fish are as links between habitats on the bottom and in the 

water(Vadeboncoeur, 2002). To predict where an animal will live, you have to figure out how 

good each habitat is. But it's hard to measure the availability of resources as seen by foragers. 

This is especially true in environments with different types of prey, where our measurements of 

prey density may not be a good indicator of what the fish see as available. Many fish species use 

both habitats every dayor at different times in their lives (Persson and Bronmark 2002b). Because 

sediments can either take nutrients away or add them, benthic habitats may have a big effect on 

the amount of nutrients in a lake. 

 

It is known that fish that feed on the bottom can cause big changes in the trophic state of shallow 

lakes. By resuspending, large bream affect turbidity and may switch a lake between two stable 

states. Zambrano (2001) said that these changes would be very bad and would depend a lot on the 

amount of benthic resources. When benthic fish eat too much of the benthic resource and the 

number of benthic resources drops, bream must increase their foraging and move it to deeper 

layers to keep from starving. This makes resuspension much worse and could make shallow lakes 

go from being clear to being cloudy, which would cause huge losses in ecosystem services and 

biodiversity. The method used in this study could be used to predict the likelihood of switching, 

which could then be used to measure the effectiveness of strategies for reducing emissions. 
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2. MATERIAL AND METHODS 

 

2.1 Study area 

 

Figure 1: The Kanwar Lake is 16 km from Begusarai, which is the district capital. It is at 25°35' 

N and 86°10' E in terms of latitude and longitude. It was made by the way the Budhi Gandak 

River, which flows into the Ganga, wound around. During the monsoon, it joins with other 

bodies of water to make an area of 7,400 ha, which is bigger than its own area of 2600 ha. In 

2009, the Indian Ministry of Environment and Forest put it on a list of lakes of national 

importance and added it to the National Wetland Conservation Program. The ground is level all 

over, with an average height of 44 metres above mean sea level. It rains an average of 1100 

millimetres per year, mostly during the southwest monsoons from July to September. It's a big 

part of the lives of people who live nearby. There are more than 41 fish that are good for business 

(Anon, 2004). Hilsa, Pomphret, Tengra, Salmon, and Catla were caught on a small scale in this 

lake. In this fishery, people often catch Wallago attu and Rohu (Cirrhinus mrigala). Based on a 

recent study by Ramakrishna et al. (2002), the lake was split into three main sections for this 

study. Samples were drawn from the entrance, middle of the lake, and exit blocks (Figure 1). 

 

2.2 Experimental Setup 

 

We took samples of the fish in the lake with NORDIC survey gill nets (Appelberg 2000). From 

knot to knot, the nets had twelve different mesh sizes that ranged from 5 to 55 mm. Because of 

variations in lake size and time limits, sample intensities were not the same in all lakes (Table 1). 

Always judged by how many net nights (CPUE, catch per unit effort). The catch was described 

by the total catch, the number of benthivores (BPUE, or benthivores per unit effort), the 

percentage of benthivores, the number of piscivores (PPUE, or piscivores per unit effort), and the 

percentage of piscivores. We chose the Wallago attu and the Rohu (Cirrhinus mrigala), which are 

both common in Kanwar Lake, to be fair representation species of the benthic ecosystem. 

Cirrhinus mrigala and Wallago attu had an average of 2.18 0.29106/mm3 and 2.36 0.36 106/mm3 

erythrocytes, respectively. 

 
Figure 1: (a) Map of India, (b) Map of Bihar and (c) Study site with sampling locations 

 

c 

b
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3. DATA ANALYSIS 

 

From the hunters' point of view, GUD showed how good the habitat was, and the amount of food 

eaten showed how much the patch was used. The normalisation of GUDs as a way to measure the 

sameness of decommissioning harvest rates is based on the idea that the search within the patch is 

random (Olsson et al. 2001). But the way the foragers act could change how the resources are 

spread out in the patch. This could cause the GUD in the rich patch to be higher than in the poor 

patch, even if the rate of harvesting stops at the same rate in both patches. There may be 

deviations from a random search if the fish picks up the best and quickest food items first or if 

stirring by the fish makes it more or less likely that it will find more food. Getting more food 

from the rich patch is an alternative and reliable way to find out if the search effort was biassed. 

When more food is started gathering from better food patches than from poorer ones, the forager 

shows that they can approximate and make adjustments to patch quality. 

 

4. RESULT & DISCUSSION 

 

Figure 2 demonstrates that the primary objective of maintaining shallow lakes should be to 

maintain an abundance of benthic organisms, notwithstanding the need to monitor the quantity of 

benthivores. However, it may be difficult to estimate the number of benthos fish in lakes with 

abundant macrophytes. We'll illustrate this with collected data on the benthos of Lake Kanwar. In 

a previous section, we discussed how an increase in nutrient loading induced a transition from a 

clear to a turbid state, and how the system remained in a turbid condition even after the external 

driver's strength decreased. In the early 1990s, those in charge of the lake tried to clean it up by 

initiating a trophic cascade that resulted in less phytoplankton through biomanipulation. Over the 

period of 1.5 years, 80 percent of the lake's bottom-dwelling fish were removed. The summer 

secchi depth increased from 0.4 m to 1.5 m as the lake became cleaner, as predicted. This 

indicates that the lake transitioned from being extremely overcast to largely clear (see "shift 2" in 

Fig. 4). Following biomanipulation, benthic fish consumed more benthos, indicating that this 

food supply became more prevalent (Persson and Bronmark, 2002). 

 

  

Figure 2 depicts the cumulative effects 

of benthivore and benthic invertebrate 

biomass on the quantity of suspended 

solids in the water, demonstrating a rise 

in turbidity when benthivore biomass 

rises or falls.  

Figure 3 shows the depth-weighted benthos 

biomass in Lake before, during, and after the 

mass removal of benthivorous fish. Benthic 

biomass was decreased even when the benthic 

predators were eliminated.  
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Fig. 4: Changes in the lake's regime. 

 

Benthos samples showed that the total benthos biomass was lower after the biomanipulation 

(Fig.3). This is likely because sedimentation after phytoplankton blooms no longer fed the 

growth of benthos in the sediment. Even though the total benthos biomass went down, the 

number of benthos that eat algae, like mollusks and snails, went up because the clearer water let 

epiphytic algae move into deeper waters. So, the fact that these types of prey are found in benthos 

shows that they are not often eaten. This shows that there isn't always a link between plenty and 

availability.  

 

Table 1 lists behavioural indicators, the data they provide, and the significance of various results. 

Benthivores leave behind a lot of resources when they leave a patch, and their maximum length is 

GUD. 

 

Behavioral indicator Information Meaning 

GUD rate of resuspension A low GUD signifies a higher 

likelihood of a turbid state. 

GUD ecosystem quality A low score suggests a greater 

likelihood of a turbid state. 

CurrentGUD/sustainableGUD departurefromequilibrium lower current GUD indicates 

lower stability 

GUDrisky/GUDsafe predator control A low score indicates greater control 

and a decreased likelihood of turbid 

conditions. 
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Here, we strongly recommend that observing how herbivores search for food is a superior 

approach. Several factors may indicate that a system is resistant to change and unlikely to 

experience regime shifts (Table 1). A large benthos biomass prevents the overexploitation of 

benthic materials and, ultimately, the re - suspension of sediments. In a cross-system comparison, 

a high GUD and a large maximum size of benthic predators were both indicative of a healthy 

habitat (Persson and Stenberg, 2006). Similar findings have been observed in a system. The 

largest bream in Lake Kanwar, a tiny lake in Bihar that naturally fluctuates from clear to hazy, 

weighed 1 kilogramme when the water was foggy and 2.4 kilogrammes when the water was 

clear. In addition, the growth rate of benthic perch increased as foggy conditions cleared. This 

occurred as a result of more available food sources. These results indicate that hunting behaviour, 

which is related to size and growth, can be used to detect early environmental changes (Table 1). 

 

Thirdly, the connection between GUD and overall height could assist us determine how 

environmental changes affect the reliability of a system. In a previous study, Persson and 

Stenberg (2006) discovered a correlation between the giving up concentration, benthos density, 

and the overall height of the bream, a typical benthivore. The study demonstrates that the 

decisions made by benthic fish in the wild reveal both the current environmental quality and their 

future growth. This is useful information since a change in GUD would indicate a change in 

environmental quality, which would drive fish to alter their future plans. In Figure 5, the solid 

line represents a condition in which short-term behavioral decisions and long-term growth 

possibilities are in equilibrium, whereas the dotted line represents the equilibrium connection in a 

particular lake. The solid star signifies that the quality of the fish's habitat has improved, allowing 

the fish to grow larger. However, the open star indicates that the quality of the habitat is 

deteriorating, which slows the growth of fish. If a significant portion of the population is already 

larger than the newly estimated maximum size, there is a possibility that the benthic resource is 

being depleted too rapidly. Thus, a speculative and non-obvious interpretation of "shift 1" in 

Figure 4 would be to assert that the transition from clear to wet conditions was caused by the fall 

in productivity, which was caused by the reduction in external phosphorus loading. It is 

intriguing that expenditures in sewage treatment facilities have led to a significant decrease in 

phosphorus loading while chlorophyll a concentration has increased. 

 

 
 

Figure 6 depicts the linear relationship between the maximum size of herbivores and giving-up 

density (GUD) based on empirical research (Persson and Stenberg, 2006). The straight line thus 

illustrates the equilibrium relationship between foraging rate and expected growth. Variances 
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from the line indicate changes in the system's status that necessitate modifying future predictions. 

Increased production would suggest a greater GUD (filled star), which would result in improved 

prospects and a larger maximum size. However, a decreasing GUD would necessitate stricter 

criteria and a reduced maximum size. There is a risk of overhunting of the benthos resource if a 

significant proportion of the benthic fish stocks contains individuals that are larger than the size 

equivalent of the GUD (see Fig. 2). 

 

CONCLUSION 

 

Ecology has placed significant emphasis on ensuring that functions at the individual, community, 

and community levels are interdependent. Recent research has examined the significance of 

marine sediments for ecosystem function in lakes.Fish are important because they move around 

and help connect different habitats.Benthic habitats may also have a big effect on the amount of 

food in a lake because sediments can both take nutrients away and give them back. The ideas 

here are a first step toward evaluating the state of a system in a way that takes individual 

behaviour into account. The suggested set of indicators tells us a lot about the state and stability 

of a system that shows both gradual and sudden changes. It also makes it easier to predict how 

likely it is that an ecosystem will change from one state to another and to find ways to stop such 

changes. Hence, a more thorough analysis would need to find critical threshold levels and turning 

points. This would require more long-term studies of how behaviour changes in response to 

changes in the environment both between and within years. Even though it would be hard work, 

these kinds of studies might give us new information that we don't have much of at the moment, 

like how a system's susceptibility to changes changes over time. 
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